已知数列{an}的通项公式为an=2^n+3n-1,求数列{an}的前n项和SN 要过程

zhkk880828
2012-03-27 · TA获得超过5.3万个赞
知道大有可为答主
回答量:1.4万
采纳率:0%
帮助的人:6934万
展开全部
an=2^n+3n-1

bn=2^n
cn=3n-1
则bn为等比数列首项为2 公比为2
前n项和为 2(1-2^n)/(1-2)=2^(n+1)-2
cn为等差数列首项为2公差为3
前n项和为 n(2+2+3(n-1))/2=(3/2)n²+n/2

所以 an的前n项和sn=2^(n+1)-2+(3/2)n²+n/2
1432998689
2012-03-27 · 超过12用户采纳过TA的回答
知道答主
回答量:70
采纳率:0%
帮助的人:34.4万
展开全部
你想多了,直接加就行。无技巧
别说不会。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-03-27
展开全部
Sn=a1+a2+……+an
=(2^1+3*1-1)+(2^2+3*2-1)+……+(2^n+3*n-1)
=(2^1+2^2+……+2^n)+3(1+2+……+n)-n*1
=2^{n+1}-2+3n(n+1)/2-n
=2^{n+1}+n(3n+1)/2-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式