高数中对隐函数的微分法怎么理解啊?举一些典型例题啊 40
1个回答
展开全部
z^3-3xyz=a^3, 求d^2z/dxdy, 的二次混合求导
用隐函数微分法
令F[x,y,z] = z³-3xyz-a³
z'x = -F'x/F'z = yz/(z²-xy)
z'y = -F'y/F'z = xz/(z²-xy)
(z也是y的函数,刚才我当成常数扔了- -!)
z''xy = [z'x]'y = [(yz)'(z² - xy) - yz * (2z z'y - x)]/(z²-xy)²
= [(z + y z'y)(z²-xy) - 2yz² z'y + xyz]/(z²-xy)²
= (z³ - yz² z'y - xy² z'y)/(z²-xy)²
= [z³ - (yz²+xy²)xz/(z²-xy)]/(z²-xy)²
= z(z^4 - 2xyz³ - x²y²z)/(z²-xy)³
用隐函数微分法
令F[x,y,z] = z³-3xyz-a³
z'x = -F'x/F'z = yz/(z²-xy)
z'y = -F'y/F'z = xz/(z²-xy)
(z也是y的函数,刚才我当成常数扔了- -!)
z''xy = [z'x]'y = [(yz)'(z² - xy) - yz * (2z z'y - x)]/(z²-xy)²
= [(z + y z'y)(z²-xy) - 2yz² z'y + xyz]/(z²-xy)²
= (z³ - yz² z'y - xy² z'y)/(z²-xy)²
= [z³ - (yz²+xy²)xz/(z²-xy)]/(z²-xy)²
= z(z^4 - 2xyz³ - x²y²z)/(z²-xy)³
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询