幂级数展开式怎么推导的?
展开全部
下面是给定函数的幂级数展开式:
1. 幂级数展开式:e^kx
e^kx 可以展开为幂级数,具体展开式为:
e^kx = 1 + kx + (kx)^2/2! + (kx)^3/3! + (kx)^4/4! + ...
这是基于指数函数的泰勒级数展开式,其中 k 是常数。
2. 幂级数展开式:sin kx
sin kx 可以展开为幂级数,具体展开式为:
sin kx = kx - (kx)^3/3! + (kx)^5/5! - (kx)^7/7! + (kx)^9/9! - ...
这是基于正弦函数的幂级数展开式,其中 k 是常数。
3. 幂级数展开式:1/(1-kx)
1/(1-kx) 可以展开为幂级数,具体展开式为:
1/(1-kx) = 1 + kx + (kx)^2 + (kx)^3 + (kx)^4 + ...
这是基于函数 1/(1-x) 的幂级数展开式,其中 x 替换为 kx。
需要注意的是,这些展开式的收敛范围和收敛性取决于 x 和 k 的取值。在一些情况下,可能需要考虑展开式的截断,以保证结果的精确性。
1. 幂级数展开式:e^kx
e^kx 可以展开为幂级数,具体展开式为:
e^kx = 1 + kx + (kx)^2/2! + (kx)^3/3! + (kx)^4/4! + ...
这是基于指数函数的泰勒级数展开式,其中 k 是常数。
2. 幂级数展开式:sin kx
sin kx 可以展开为幂级数,具体展开式为:
sin kx = kx - (kx)^3/3! + (kx)^5/5! - (kx)^7/7! + (kx)^9/9! - ...
这是基于正弦函数的幂级数展开式,其中 k 是常数。
3. 幂级数展开式:1/(1-kx)
1/(1-kx) 可以展开为幂级数,具体展开式为:
1/(1-kx) = 1 + kx + (kx)^2 + (kx)^3 + (kx)^4 + ...
这是基于函数 1/(1-x) 的幂级数展开式,其中 x 替换为 kx。
需要注意的是,这些展开式的收敛范围和收敛性取决于 x 和 k 的取值。在一些情况下,可能需要考虑展开式的截断,以保证结果的精确性。
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
arcsinx展开成x的幂级数,先求导数的幂级数,再逐项积分,得到arcsinx的幂级数。如图所示:幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、誉竖复变函数等众多领域当中。扩展资料1、扮纯幂级数展开公式是公比为q=x的等比级数求和公式的反过来应用,可以直接使用,没有必要写出具体过程,如果一定要写,就写在下面,略有点麻烦,其中第步要用到收敛的等比级数的余项级数,仍然是等比级数和,这是中学知识2、f(x)=1/(1-x),庆缺大f'(x)=1/(1-x)^2,f''(x)=2!/(1-x)^3,f'''(x)=3!/(1-x)^4,……,[f(x)](n阶导)=n!/(1-x)^(n+
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询