求高手翻译啊
Themixed-integerformulationconsistsof363binaryvariables,30integervari-ablesand303cont...
The mixed-integer formulation consists of 363 binary variables, 30 integer vari-
ables and 303 continuous variables. The number of variables reflects the combina-
torial nature of network design problems. We implemented the MRTNDP using the
MIP solver in CPLEX® 6.0 package. At CPLEX termination, the solution attains
an objective value of 995, and consists of 3 different routes, whose iternaries and
line frequencies are shown in Figure 2. In this example, the routes altogether visit
all the nodes, which is not necessary the case in general. For clarity, the forward
direction of a route is referred to as the left-to-right direction in Figure 2. The
solution also provides the following split of OD demands among the 3 routes.
Figure 2 also shows the bottleneck segments of each route where the passenger
load attains the line capacity. There is at least one bottleneck segment on each route
unless the minimum frequency is a binding condition. Otherwise, we can reduce
the cost by providing service at a lower frequency level. The illustrative example
shows an extreme case that all backward segments on route 3 are at capacity. We
would expect similar results whenever a route is designed to serve a particular OD
demand, as in route 3 in this case.
From Table II, we notice that the demand from node 6 to node 9 uses both
routes 1 and 2 as its cost-minimizing strategy. This is the only pattern to achieve the
current objective value; however, in general there may be multiple cost-minimizing
米有人吗?急啊 展开
ables and 303 continuous variables. The number of variables reflects the combina-
torial nature of network design problems. We implemented the MRTNDP using the
MIP solver in CPLEX® 6.0 package. At CPLEX termination, the solution attains
an objective value of 995, and consists of 3 different routes, whose iternaries and
line frequencies are shown in Figure 2. In this example, the routes altogether visit
all the nodes, which is not necessary the case in general. For clarity, the forward
direction of a route is referred to as the left-to-right direction in Figure 2. The
solution also provides the following split of OD demands among the 3 routes.
Figure 2 also shows the bottleneck segments of each route where the passenger
load attains the line capacity. There is at least one bottleneck segment on each route
unless the minimum frequency is a binding condition. Otherwise, we can reduce
the cost by providing service at a lower frequency level. The illustrative example
shows an extreme case that all backward segments on route 3 are at capacity. We
would expect similar results whenever a route is designed to serve a particular OD
demand, as in route 3 in this case.
From Table II, we notice that the demand from node 6 to node 9 uses both
routes 1 and 2 as its cost-minimizing strategy. This is the only pattern to achieve the
current objective value; however, in general there may be multiple cost-minimizing
米有人吗?急啊 展开
展开全部
求采纳!!!
The mixed-integer formulation consists of 363 binary variables, 30 integer vari-
包括363个的整数配方二进制变量,30整数诸多-
ables and 303 continuous variables.
ables和303连续变量。
The number of variables reflects the combina-
这反映了变量数目的combina -
torial nature of network design problems.
torial网络设计问题的本质。
We implemented the MRTNDP using the
我们实施MRTNDP使用
MIP solver in CPLEX® 6.0 package.
在6.0®MIP求解CPLEX数学包裹。
At CPLEX termination, the solution attains
在终止CPLEX数学、解决获
an objective value of 995, and consists of 3 different routes, whose iternaries and
一个客观的价值为995,由三个不同的路线,其iternaries
line frequencies are shown in Figure 2.
线频率如图2所示。
In this example, the routes altogether visit
在这个例子里,路线共访问
all the nodes, which is not necessary the case in general.
所有的节点,这是没有必要的案件中一般。
For clarity, the forward
为了清晰,这位前锋
direction of a route is referred to as the left-to-right direction in Figure 2.
一条路线的方向是指这个从左到右的方向图2。
The
这
solution also provides the following split of OD demands among the 3 routes.
解决方案也将提供以下OD分裂的要求在3路线。
Figure 2 also shows the bottleneck segments of each route where the passenger
图2中还段每条线路的瓶颈在乘客
load attains the line capacity.
负荷获线能力。
There is at least one bottleneck segment on each route
至少有一个瓶颈环节在每一个路线
unless the minimum frequency is a binding condition.
除非最低频率是一个具有法律约束力的条件。
Otherwise, we can reduce
否则,我们能减少
the cost by providing service at a lower frequency level.
提供服务的成本在一个较低的频率水平上。
The illustrative example
数值例子的
shows an extreme case that all backward segments on route 3 are at capacity.
显示一个极端的例子,所有三号干线落后的片段在能力。
We
我们
would expect similar results whenever a route is designed to serve a particular OD
希望类似的结果每当一个路线都是为他们设计的一个特定的OD吗
demand, as in route 3 in this case.
需求,在三号干线在这种情况下。
From Table II, we notice that the demand from node 6 to node 9 uses both
从表II,我们发现的需求6至9节点的节点既使用
routes 1 and 2 as its cost-minimizing strategy.
线路1和2为cost-minimizing策略。
This is the only pattern to achieve the
这是唯一的方式来实现
current objective value; however, in general there may be multiple cost-minimizing
当前客观评价值;然而,一般来说可能会有多个cost-minimizing
有什么不懂的可以再问我!(*^__^*) 嘻嘻……
The mixed-integer formulation consists of 363 binary variables, 30 integer vari-
包括363个的整数配方二进制变量,30整数诸多-
ables and 303 continuous variables.
ables和303连续变量。
The number of variables reflects the combina-
这反映了变量数目的combina -
torial nature of network design problems.
torial网络设计问题的本质。
We implemented the MRTNDP using the
我们实施MRTNDP使用
MIP solver in CPLEX® 6.0 package.
在6.0®MIP求解CPLEX数学包裹。
At CPLEX termination, the solution attains
在终止CPLEX数学、解决获
an objective value of 995, and consists of 3 different routes, whose iternaries and
一个客观的价值为995,由三个不同的路线,其iternaries
line frequencies are shown in Figure 2.
线频率如图2所示。
In this example, the routes altogether visit
在这个例子里,路线共访问
all the nodes, which is not necessary the case in general.
所有的节点,这是没有必要的案件中一般。
For clarity, the forward
为了清晰,这位前锋
direction of a route is referred to as the left-to-right direction in Figure 2.
一条路线的方向是指这个从左到右的方向图2。
The
这
solution also provides the following split of OD demands among the 3 routes.
解决方案也将提供以下OD分裂的要求在3路线。
Figure 2 also shows the bottleneck segments of each route where the passenger
图2中还段每条线路的瓶颈在乘客
load attains the line capacity.
负荷获线能力。
There is at least one bottleneck segment on each route
至少有一个瓶颈环节在每一个路线
unless the minimum frequency is a binding condition.
除非最低频率是一个具有法律约束力的条件。
Otherwise, we can reduce
否则,我们能减少
the cost by providing service at a lower frequency level.
提供服务的成本在一个较低的频率水平上。
The illustrative example
数值例子的
shows an extreme case that all backward segments on route 3 are at capacity.
显示一个极端的例子,所有三号干线落后的片段在能力。
We
我们
would expect similar results whenever a route is designed to serve a particular OD
希望类似的结果每当一个路线都是为他们设计的一个特定的OD吗
demand, as in route 3 in this case.
需求,在三号干线在这种情况下。
From Table II, we notice that the demand from node 6 to node 9 uses both
从表II,我们发现的需求6至9节点的节点既使用
routes 1 and 2 as its cost-minimizing strategy.
线路1和2为cost-minimizing策略。
This is the only pattern to achieve the
这是唯一的方式来实现
current objective value; however, in general there may be multiple cost-minimizing
当前客观评价值;然而,一般来说可能会有多个cost-minimizing
有什么不懂的可以再问我!(*^__^*) 嘻嘻……
追问
额,,,我怎么感觉都连不起来啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
包括363个的整数配方二进制变量,30整数诸多-
ables和303连续变量。这反映了变量数目的combina -
torial网络设计问题的本质。我们实施MRTNDP使用
在6.0®MIP求解CPLEX數学包裹。在终止CPLEX數学、解决获
一个客观的价值为995,由三个不同的路线,其iternaries
线频率如图2所示。在这个例子里,路线共访问
所有的节点,这是没有必要的案件中一般。为了清晰,这位前锋
一条路线的方向是指这个从左到右的方向图2。这
解决方案也将提供以下OD分裂的要求在3路线。
图2中还段每条线路的瓶颈在乘客
负荷获线能力。至少有一个瓶颈环节在每一个路线
除非最低频率是一个具有法律约束力的条件。否则,我们能减少
提供服务的成本在一个较低的频率水平上。数值例子的
显示一个极端的例子,所有三号干线落后的片段在能力。我们
希望类似的结果每当一个路线都是为他们设计的一个特定的OD吗
需求,在三号干线在这种情况下。
从表II,我们发现的需求6至9节点的节点既使用
线路1和2为cost-minimizing策略。这是唯一的方式来实现
当前客观评价值;然而,一般来说可能会有多个cost-minimizing
ables和303连续变量。这反映了变量数目的combina -
torial网络设计问题的本质。我们实施MRTNDP使用
在6.0®MIP求解CPLEX數学包裹。在终止CPLEX數学、解决获
一个客观的价值为995,由三个不同的路线,其iternaries
线频率如图2所示。在这个例子里,路线共访问
所有的节点,这是没有必要的案件中一般。为了清晰,这位前锋
一条路线的方向是指这个从左到右的方向图2。这
解决方案也将提供以下OD分裂的要求在3路线。
图2中还段每条线路的瓶颈在乘客
负荷获线能力。至少有一个瓶颈环节在每一个路线
除非最低频率是一个具有法律约束力的条件。否则,我们能减少
提供服务的成本在一个较低的频率水平上。数值例子的
显示一个极端的例子,所有三号干线落后的片段在能力。我们
希望类似的结果每当一个路线都是为他们设计的一个特定的OD吗
需求,在三号干线在这种情况下。
从表II,我们发现的需求6至9节点的节点既使用
线路1和2为cost-minimizing策略。这是唯一的方式来实现
当前客观评价值;然而,一般来说可能会有多个cost-minimizing
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询