求函数z=f(x^2+y^2)的二阶偏导数, 其中f具有二阶连续偏导数

生活小主6
高能答主

2021-08-17 · 生活方面百事通,欢迎来提问~
生活小主6
采纳数:103 获赞数:4166

向TA提问 私信TA
展开全部

函数z=f(x^2+y^2)的二阶偏导数有三个。具体如下:逗态老

解:

设z=f(t),t=φ(xy,x^2+y^2),其中,f,φ具有连续的二阶导数及偏导数,求δ^2z/δx^2。

δz/δx=f1 ·(x²+y²)′+f2 · (x²-y²)′f1f2为f函数的偏导,可以直接放在这里的(x²+y²)′和(x²-y²)′,在这里都是把y当常数对x求导。

∴有δz/δx=f1·2x+f2·2x,

∴ δ^2z/δxδy=2x(f1′+f2′)。

根据导函数的性质f1和f2的形式与原函数f(x^2+y^2,x^2-y^2)形式一致且现在x是常数,对y求导。

∴f1′=f11· (x²+闭辩y²)′+f12· (x²-y²)′=f11·2y+f12·﹙﹣2y﹚f2′=f21· (x²+y²)′+f22· (x²-y²)′=f21·2y+f22·(﹣2y)

∴δ^2z/δxδy=4xy(f11-f12+f21-f22)

偏导数几何意义

表示固定面上一点的切线斜率。

偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏山升导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。

以上资料参考 百度百科—偏导数

教育小百科达人
2020-12-24 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:468万
展开全部

计算过程如下:

z=xf(x^2+y^2)

dz=f(x^2+y^2)dx+xf'(x^2+y^2)(2xdx+2ydy)

dz=[f(x^2+y^2)+2x^2f'(x^2+y^2)]dx+2xyf'(x^2+y^2)dy

dz/dx=f(x^2+y^2)+2x^2f'(x^2+y^2)

d^2z/dxdy=2yf'(x^2+y^2)+2x^2f''(x^2+y^2)2y

=2yf'(x^2+y^2)+4x^2yf''(x^2+y^2)

扩展资料:

当函凯悔数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时拍孙凳,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简袭旅称偏导数。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
旅游小达人Ky
高粉答主

2020-12-26 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1893
采纳率:100%
帮助的人:38万
展开全部

计算过程如下:

z=xf(x^2+y^2)

dz=f(x^2+y^2)dx+xf'(x^2+y^2)(2xdx+2ydy)

dz=[f(x^2+y^2)+2x^2f'(x^2+y^2)]dx+2xyf'(x^2+y^2)dy

dz/dx=f(x^2+y^2)+2x^2f'(x^2+y^2)

d^2z/dxdy=2yf'(x^2+y^2)+2x^2f''(x^2+y^2)2y

=2yf'(x^2+y^2)+4x^2yf''(x^2+y^2)

扩展资料

二阶偏导数对函数关于同一个自变量连续求两次导数,即d(dy/dx)/dx,二阶混合偏导数就是对函数先关于其中一宏族个蔽弯弊自变量求一次导数。

在一元函数中闹罩,导数就是函数的变化率。对于二元函数的“变化率”,由于自变量多了一个,情况就要复杂的多。在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般来说是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-03-29
展开全部

如袭雹祥枣图拍宴帆。

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-03-28
展开全部
先求一次偏导数再求二次偏导数啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式