lim(x趋近于+∞)∫(0→x)(2arctantdt)/√(1+x²)等于什么?

heanmen
2012-03-30 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4283
采纳率:100%
帮助的人:2599万
展开全部
解法一:∵∫<0,x>2arctantdt=2xarctanx-2∫<0,x>tdt/(1+t²) (应用分部积分法)
=2xarctanx-ln(1+x²)
lim(x->+∞)[ln(1+x²)/x]=lim(x->+∞)[2x/(1+x²)] (∞/∞型极限,应用罗比达法则)
=lim(x->+∞)[(2/x)/(1+1/x²)]
=0
∴原式=lim(x->+∞)[(2xarctanx-ln(1+x²))/√(1+x²)]
=lim(x->+∞)[(2arctanx-ln(1+x²)/x)/√(1+1/x²)] (分子分母同除x)
=[2(π/2)-0]/√(1+0)
=π;
解法二:原式=lim(x->+∞)[2arctanx/(x/√(1+x²))] (∞/∞型极限,应用罗比达法则)
=2[lim(x->+∞)(arctanx)]*{lim(x->+∞)[√(1+1/x²]}
=2(π/2)*√(1+0)
=π。
丘冷萱Ad
2012-03-29 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3948万
展开全部
洛必达法则
=lim 2arctanx / (x/√(1+x²))
当x--->+∞时,arctanx--->π/2,x/√(1+x²)=1/√(1+1/x²)--->1
因此本题极限为π。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式