2011年上海中考数学试题第23题怎样解答
2个回答
展开全部
23. (本题满分12分,每小题满分各6分)
[解] (1) 等腰梯形ABCD中,AB=DC,B=DCB,∵ △DFC是等腰三角形,∴ DCB=FCE,
DC=CF,所以B=FCE,AB=CF,易证四边形ABFC是平行四边形。
(2) 提示:射影定理的逆定理不能直接在中考中使用,必须通过相似三角形来证明,内
角为90。
[解] (1) 等腰梯形ABCD中,AB=DC,B=DCB,∵ △DFC是等腰三角形,∴ DCB=FCE,
DC=CF,所以B=FCE,AB=CF,易证四边形ABFC是平行四边形。
(2) 提示:射影定理的逆定理不能直接在中考中使用,必须通过相似三角形来证明,内
角为90。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
23、如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.
(1)求证:四边形ABFC是平行四边形;
(2)如果DE2=BE•CE,求证四边形ABFC是矩形.
解:
证明:
(1)连接BD,
∵梯形ABCD中,AD∥BC,AB=DC,
∴AC=BD,∠ACB=∠DBC
∵DE⊥BC,EF=DE,
∴BD=BF,∠DBC=∠FBC,
∴AC=BF,∠ACB=∠CBF
∴AC∥BF,
∴四边形ABFC是平行四边形;
(2)∵DE2=BE•CE
∴ DEBE=CEDE,
∵∠DEB=∠DEC=90°,
∴△BDE∽△DEC,
∴∠CDE=∠DBE,
∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°,
∴四边形ABFC是矩形.
(1)求证:四边形ABFC是平行四边形;
(2)如果DE2=BE•CE,求证四边形ABFC是矩形.
解:
证明:
(1)连接BD,
∵梯形ABCD中,AD∥BC,AB=DC,
∴AC=BD,∠ACB=∠DBC
∵DE⊥BC,EF=DE,
∴BD=BF,∠DBC=∠FBC,
∴AC=BF,∠ACB=∠CBF
∴AC∥BF,
∴四边形ABFC是平行四边形;
(2)∵DE2=BE•CE
∴ DEBE=CEDE,
∵∠DEB=∠DEC=90°,
∴△BDE∽△DEC,
∴∠CDE=∠DBE,
∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°,
∴四边形ABFC是矩形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询