椭圆X^2/4+Y^2/3=1,若椭圆的左右焦点分别为F1,F2,过点F2的直线l:X=mY+1与椭圆交与M,N两点,则三角形F1MN
椭圆X^2/4+Y^2/3=1,若椭圆的左右焦点分别为F1,F2,过点F2的直线l:X=mY+1与椭圆交与M,N两点,则三角形F1MN的内切圆的面积是否存在最大值?若存在...
椭圆X^2/4+Y^2/3=1,若椭圆的左右焦点分别为F1,F2,过点F2的直线l:X=mY+1与椭圆交与M,N两点,则三角形F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由
三角形F1MN的周长是定值,能不能换一种方式把半径表示出来? 展开
三角形F1MN的周长是定值,能不能换一种方式把半径表示出来? 展开
3个回答
展开全部
a=2,b=√3,c=1,
焦点F1(-1,0),F2(1,0),
∵△F1MN=|F1M|+|MF2|+|F1N|+|NF2|=2a+2a=4a=8,
要使内切圆面积最大,则其半径应最大,设内切圆半径为r,周长p,
现证明公式如下:△ABC,边长a,b,c,设内心I,分别连结IA、IB、IC,三角形分成三个小三角形,三个面积和为(a+b+c)r/2,
因△F2MN周长是定值,p=8,面积为S,根据公式,r*p/2=S,
r=2S/p,故问题转变成三角形面积最大问题,S最大,则r也最大,
MN直线经过F2(1,0),方程为:y=k(x-1),k为斜率,
离心率e=c/a=1/2,
根据经过焦点弦长公式,|MN|=(2b^2/a)/[1-e^2*(cosθ)^2]
=(2*3/2)/[1-(1/4)*(cosθ)^2]
=12/[4-(cosθ)^2]
=12/[3+(sinθ)^2],
θ为焦点弦和X轴夹角,
F2至MN距离d=|F1F2|*sinθ=2 sinθ,
S△F1MN=|MN|*d/2
S=12/[3+(sinθ)^2]* (2 sinθ)/2
=12 sinθ/[3+(sinθ)^2]
dS/dθ={12*cosθ[3+(sinθ)^2]-24 (sinθ)^2cosθ}/[3+(sinθ)^2]^2
=12[3cosθ-(sinθ)^2cosθ]/ [3+(sinθ)^2]^2
令dS/dθ=0,
[3cosθ-(sinθ)^2cosθ]=0,
cosθ[3-( sinθ)^2]=0,
cosθ=0, θ=π/2,
∵当π/2<θ<2π/3时,
cosθ〈0,3-( sinθ)^2〉0,[3+(sinθ)^2]^2>0,
∴dS/dθ<0,
π/3<θ<π/2, dS/dθ>0,
∴θ=π/2是极大值点,
(sinθ)^2=3,sinθ=±√3,
而∵0〈=θ〈=π,∴sinθ>0,
∴sinθ=√3,
θ=π/3,θ=2π/3,
0<θ<π/3时,S’>0,
π/3<θ<π/2时,S’>0,故不是极值点,
θ=2π/3也不是极值点,因为在它左右附近S’<0,
∴S(max)=12*sin(π/2)/[3+sin^2(π/2)]
=3,
即虽然垂直弦|MN|最短,但三角形面积却最大,
此时直线方程为:x=1,
三角形周长=2a+2a=8,
8*r/2=3,
r=3/4,
内切圆面积最大值S1=πr^2=9π/16。
焦点F1(-1,0),F2(1,0),
∵△F1MN=|F1M|+|MF2|+|F1N|+|NF2|=2a+2a=4a=8,
要使内切圆面积最大,则其半径应最大,设内切圆半径为r,周长p,
现证明公式如下:△ABC,边长a,b,c,设内心I,分别连结IA、IB、IC,三角形分成三个小三角形,三个面积和为(a+b+c)r/2,
因△F2MN周长是定值,p=8,面积为S,根据公式,r*p/2=S,
r=2S/p,故问题转变成三角形面积最大问题,S最大,则r也最大,
MN直线经过F2(1,0),方程为:y=k(x-1),k为斜率,
离心率e=c/a=1/2,
根据经过焦点弦长公式,|MN|=(2b^2/a)/[1-e^2*(cosθ)^2]
=(2*3/2)/[1-(1/4)*(cosθ)^2]
=12/[4-(cosθ)^2]
=12/[3+(sinθ)^2],
θ为焦点弦和X轴夹角,
F2至MN距离d=|F1F2|*sinθ=2 sinθ,
S△F1MN=|MN|*d/2
S=12/[3+(sinθ)^2]* (2 sinθ)/2
=12 sinθ/[3+(sinθ)^2]
dS/dθ={12*cosθ[3+(sinθ)^2]-24 (sinθ)^2cosθ}/[3+(sinθ)^2]^2
=12[3cosθ-(sinθ)^2cosθ]/ [3+(sinθ)^2]^2
令dS/dθ=0,
[3cosθ-(sinθ)^2cosθ]=0,
cosθ[3-( sinθ)^2]=0,
cosθ=0, θ=π/2,
∵当π/2<θ<2π/3时,
cosθ〈0,3-( sinθ)^2〉0,[3+(sinθ)^2]^2>0,
∴dS/dθ<0,
π/3<θ<π/2, dS/dθ>0,
∴θ=π/2是极大值点,
(sinθ)^2=3,sinθ=±√3,
而∵0〈=θ〈=π,∴sinθ>0,
∴sinθ=√3,
θ=π/3,θ=2π/3,
0<θ<π/3时,S’>0,
π/3<θ<π/2时,S’>0,故不是极值点,
θ=2π/3也不是极值点,因为在它左右附近S’<0,
∴S(max)=12*sin(π/2)/[3+sin^2(π/2)]
=3,
即虽然垂直弦|MN|最短,但三角形面积却最大,
此时直线方程为:x=1,
三角形周长=2a+2a=8,
8*r/2=3,
r=3/4,
内切圆面积最大值S1=πr^2=9π/16。
展开全部
椭圆X^2/4+Y^2/3=1,若椭圆的左右焦点分别为F1,F2,过点F2的直线l:X=mY+1与椭圆交与M,N两点,则三角形F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由
解析:∵椭圆X^2/4+Y^2/3=1,左右焦点分别为F1,F2,过点F2的直线l:X=mY+1与椭圆交与M,N两点
∴F1(-1,0),F2(1,0)
将直线性L代入椭圆得(3m^2+4)y^2+6my-9=0
由韦达定理得y1+y2=-6m/(3m^2+4),y1y2=-9/(3m^2+4)
|MN|=√(1+m^2)*|y1-y2|
|y1-y2|=√[36m^2+36(3m^2+4)]/ (3m^2+4)= 12√(m^2+1)/ (3m^2+4)
∴|MN|=12(1+m^2)/(3m^2+4)
F1到直线MN的距离:d=|-1-1|/√(m^2+1)=2/√(m^2+1)
∴S(⊿F1MN)=1/2*d*|MN|=1/√(m^2+1)* 12(1+m^2)/(3m^2+4)=12√(m^2+1)/(3m^2+4)
设f(m)= 12√(m^2+1)/(3m^2+4)
令f’(m)= 12(-3m^3-2m)/[√(m^2+1)(3m^2+4)^2]=0==>m=0
当m>0时,f’(m)<0;当m<0时,f’(m)>0;
∴函数f(m)在m=0处取极大值,即S(⊿F1MN)=3
直线L为x=1
解析:∵椭圆X^2/4+Y^2/3=1,左右焦点分别为F1,F2,过点F2的直线l:X=mY+1与椭圆交与M,N两点
∴F1(-1,0),F2(1,0)
将直线性L代入椭圆得(3m^2+4)y^2+6my-9=0
由韦达定理得y1+y2=-6m/(3m^2+4),y1y2=-9/(3m^2+4)
|MN|=√(1+m^2)*|y1-y2|
|y1-y2|=√[36m^2+36(3m^2+4)]/ (3m^2+4)= 12√(m^2+1)/ (3m^2+4)
∴|MN|=12(1+m^2)/(3m^2+4)
F1到直线MN的距离:d=|-1-1|/√(m^2+1)=2/√(m^2+1)
∴S(⊿F1MN)=1/2*d*|MN|=1/√(m^2+1)* 12(1+m^2)/(3m^2+4)=12√(m^2+1)/(3m^2+4)
设f(m)= 12√(m^2+1)/(3m^2+4)
令f’(m)= 12(-3m^3-2m)/[√(m^2+1)(3m^2+4)^2]=0==>m=0
当m>0时,f’(m)<0;当m<0时,f’(m)>0;
∴函数f(m)在m=0处取极大值,即S(⊿F1MN)=3
直线L为x=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |