怎样合并同类项
1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项
典题:如果-2x2yn和3xmy3是同类项,那么n= 3 ,m= 2 。
2、合并同类项:把多项式中的同类项合并成一项。合并后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
(1)合并同类项中,需要交换加数位置,注意各项系数的符号性质,不能只交换绝对值,而丢了符号
(2)全并同类项中,需要运用加法结合律及乘法分配律的逆运算,添加括号时,如果括号中第一项的系数是负数,建议恢复这个项前面的“+”号
(3)先观察是否存在表示相反数的项,可以直接抵消
(4)有时可以将诸如(a-b)这样的简单式子看成一个整体。即将式子看成一个字母
扩展资料:
合并同类项就是利用乘法分配律,同类项的系数相加,所得的结果作为系数,字母和指数不变。合并同类项实际上就是乘法分配律的逆向运用。
即将同类项中的每一项都看成系数与另一个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每一项都是系数与相同的另一个因数的积。合并时将分配律逆向运用,用相同的那个因数去乘以各项系数的代数和。
合并同类项法则
(一)合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变。字母不变,系数相加减。
(二)同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
补充说明
1、如果两个单项式,它们所含的字母相同,并且银郑各字母的指数也分别相同,那么就称这两个单项老绝式为同类项。如2ab与-3ab,m²n与m²n都是同类项。特别地,所有的常数项也都是同类项。
2、把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3、合并同类项的理论依据
其实,合并同类项法则是有其理论依据的。它所依据的就是大家早已熟知了的乘法侍搏姿分配律,a(b+c)=ab+ac。
参考资料:百度百科-合并同类项
2018-10-06 · 知道合伙人教育行家
合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
合并同类项例子:
1、-8ab+6ab-3ab
分析 :同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。
解答 :原式=(-8+6-3)ab=-5 ab
2、-xy+3-2xy+5xy-4xy-7
分析: 在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。
解答: 原式=(-xy+5xy)+(-2xy-4xy)+(3-7)
=4xy+(-6xy)-4
=-2xy-4
合并同类项的一般步骤如下:
(1)找出同类项并做标记;
(2)运用交换律、结合律将同类项合并;
(3)合并同类项;
(4)按同一个字母的降幂或者升幂排列。
扩展资料:
合并同类项就是利用乘法分配律,同类项的系数相加,所得的结果作为系数,字母和指数不变。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成系数与另一个因数的积,由梁胡拍于各项中都含有相同的字母并且它们的指数也做庆分别相同,故同类项中的每一项都是系数与相同的另一个因数的积。合并时将分配律逆向运用,用相同的那个因数橡羡去乘以各项系数的代数和。
参考资料:百度百科-合并同类项
合并同类项就是利用乘法分配律,同类项的系数相加,所得的结果作为系数,字母和指数不变。
例如合并同类项-8ab+6ab-3ab
分析 :同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。
解答 :原式=(-8+6-3)ab=-5 ab。
扩展资料
合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成系数与另一个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每一项都是系数与相同的另一个因数的积。合并时将分配律饥耐逆向运用,用相同的那个因数去乘以各项系数的岩肢纯代数和。
所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
把多项式中的同类项合并成一项,叫做合并同类项。
参粗咐考资料百度百科-合并同类项
典题:如果-2x2yn和3xmy3是同类项,那码或么n= 3 ,m= 2 。
2、合并同腔大类项:把多项式中的同类项合并成一项。合并后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
(1)合并同类项中,需要交换加数位置,注意各项系数的符号性质,不能只交换绝对值,而丢了符号
(2)全并同类项中,需要运用加法结合律及乘法分配律的逆运算,添加括号时,如果括号中第一项的系数是负数,建议恢复这个项前面的“+”号
(3)先观察是否存在表示相反数的项,可以直接抵消
(4)有时可以将诸如(a-b)这样的简单式子看成一个整迟圆伍体。即将式子看成一个字母
典题:合并同类项
1、3ab-5ab2+3a2b-4ab+2ab2-3ab
解:原式=(3ab-3ab)-4ab+(-5ab2+2ab2)+3a2b
=-4ab+(-5+2)ab2+3a2b
=-4ab+(-3)ab2+3a2b
=-4ab-3ab2+3a2b
2、2(2x-y)-3(2x-y)2+2x-y-5(2x-y)2
解:原式=2(2x-y)-3(2x-y)2+(2x-y)-5(2x-y)2
=[2(2x-y)+(2x-y)]+[-3(2x-y)2-5(2x-y)2]
=(2+1)(2x-y)+(-3-5)(2x-y)2
=3(2x-y)-8(2x-y)2
合并同类项例子:
1、-8ab+6ab-3ab
分析 :同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。
解答 :原式=(-8+6-3)ab=-5 ab
2、-xy+3-2xy+5xy-4xy-7
分析: 在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。
解答: 原式=(-xy+5xy)+(-2xy-4xy)+(3-7)
=4xy+(-6xy)-4
=-2xy-4
合并同类项的一般步骤脊宽肢如下:
(1)找出同类项并做标记;
(2)运用交换律、樱世结合律将同类项合并;
(3)合并同类项;
(4)按同一个字母的降幂或者升幂排列。