数列求和:Sn=1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+4+...+n)
3个回答
展开全部
分母的通项是an=1+2+...+n=n(n+1)/2
所以Sn=1/a1+1/a2+...+1/an
=2/1*2+2/2*3+...+2/n(n+1)
=2[(1-1/2)+(1/2-1/3)+...+(1/n-1/(n+1))]
=2[1-1/(n+1)]
=2n/(n+1)
所以Sn=1/a1+1/a2+...+1/an
=2/1*2+2/2*3+...+2/n(n+1)
=2[(1-1/2)+(1/2-1/3)+...+(1/n-1/(n+1))]
=2[1-1/(n+1)]
=2n/(n+1)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Sn=1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+4+...+n)
=1+2[1/(1×2)+1/(2×3)+......+1/(n(n+1))]
=1+2[1-1/(n+1)]
=1+2n/(n+1)
=1+2[1/(1×2)+1/(2×3)+......+1/(n(n+1))]
=1+2[1-1/(n+1)]
=1+2n/(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
An=1/(1+2+3..+n)
An=1/n(n+1)/2
An=2/n(n+1)
An=1/n(n+1)/2
An=2/n(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询