设实数x、y满足方程2x^2+3y^2=6y,求x+y的最大值 急求!!
3个回答
展开全部
2x^2+3y^2=6y
2x^2+3(y-1)^2-=3
x^2/3+(y-1)^2/2=0.5
x=√1.5cost , y=sint+1
x+y=√1.5cost +sint+1
=√10/2sin(t +p) p=arctan(√1.5 )
x+y的最大值=√10/2+1
2x^2+3(y-1)^2-=3
x^2/3+(y-1)^2/2=0.5
x=√1.5cost , y=sint+1
x+y=√1.5cost +sint+1
=√10/2sin(t +p) p=arctan(√1.5 )
x+y的最大值=√10/2+1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
配方得:2x^2/3+(y-1)^2=1
参数法:x=acost, y=1+sint, a=√(3/2)
因此有:x+y=acost+1+sint=1+√(a^2+1)sin(t+p)=1+√(5/2)sin(t+p), 其中p=arctana
故最大值为1+√(5/2)
参数法:x=acost, y=1+sint, a=√(3/2)
因此有:x+y=acost+1+sint=1+√(a^2+1)sin(t+p)=1+√(5/2)sin(t+p), 其中p=arctana
故最大值为1+√(5/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询