2个回答
展开全部
∫(x*arctanx)/[(1+x^2)^3]dx
=∫(1/2)(arctanx)/[(1+x^2)^3]d(x^2+1)
=∫(1/2)(arctanx)(-1/2)d[(x^2+1)^(-2)]
=(-1/4)arctanx/(x^2+1)^2+(1/4)∫(x^2+1)^(-2)d(arctanx)
=(-1/4)arctanx/(x^2+1)^2+(1/4)∫(x^2+1)^(-2)(x^2+1)^2dx
=(-1/4)arctanx/(x^2+1)^2+(1/4)∫dx
=-arctanx/[4(x^2+1)^2]+x/4+C
C是积分任意常数。
=∫(1/2)(arctanx)/[(1+x^2)^3]d(x^2+1)
=∫(1/2)(arctanx)(-1/2)d[(x^2+1)^(-2)]
=(-1/4)arctanx/(x^2+1)^2+(1/4)∫(x^2+1)^(-2)d(arctanx)
=(-1/4)arctanx/(x^2+1)^2+(1/4)∫(x^2+1)^(-2)(x^2+1)^2dx
=(-1/4)arctanx/(x^2+1)^2+(1/4)∫dx
=-arctanx/[4(x^2+1)^2]+x/4+C
C是积分任意常数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询