小学四年级奥数题目及答案。。。
5个回答
2012-04-05
展开全部
和倍问题
1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?
(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁 8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁 (2)32÷8=4(倍)
计算结果符合条件,所以解题正确。
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
甲乙飞机的速度分别每小时行800千米、400千米。
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
(1)兄弟俩共有课外书的数量是20+25=45。
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。
(3)哥哥剩下的课外书的本数是45÷3=15。
(4)哥哥给弟弟课外书的本数是25-15=10。
试着列出综合算式:
4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。
甲库原存粮130吨,乙库原存粮40吨。
列方程组解应用题(一)
1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数
用86张白铁皮做盒身,64张白铁皮做盒底。
奇数与偶数(一)
其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。
偶数与整数的积是偶数。
性质3 任何一个奇数一定不等于任何一个偶数。
1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?
同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。
奥赛专题 -- 称球问题
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
奥赛专题 -- 抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。
1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?
(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁 8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁 (2)32÷8=4(倍)
计算结果符合条件,所以解题正确。
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
甲乙飞机的速度分别每小时行800千米、400千米。
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
(1)兄弟俩共有课外书的数量是20+25=45。
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。
(3)哥哥剩下的课外书的本数是45÷3=15。
(4)哥哥给弟弟课外书的本数是25-15=10。
试着列出综合算式:
4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。
甲库原存粮130吨,乙库原存粮40吨。
列方程组解应用题(一)
1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数
用86张白铁皮做盒身,64张白铁皮做盒底。
奇数与偶数(一)
其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。
偶数与整数的积是偶数。
性质3 任何一个奇数一定不等于任何一个偶数。
1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?
同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。
奥赛专题 -- 称球问题
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
奥赛专题 -- 抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。
展开全部
问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?
这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。
得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。
为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。
在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。
题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?
此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:
后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。
如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?
67×(2+1)-17×(5+1)
=201-102
=99(吨)
99÷〔(5+1)-(2+1)〕
=99÷3
=33(吨)答:原来的乙有33吨。
(33+67)×2+67
=200+67
=267(吨)答:原来的甲有267吨。
分析:
1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;
甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。
2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,
理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)
3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。
4、再求原来的甲即可。
甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米
小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...
1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.
2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?
3.6盆花要摆成4排,每排3盆,应该怎样摆?
4.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?
5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 35
25 15 5
5 25 45
6.5饿连续偶数的和是240,这5个偶数分别是多少?
7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
1 70*53最大 30*75最小
2 64块
3 五角星形
4 4*3*2*1=24
5不能,因为都是奇数,奇数个奇数相加不可能得偶数
6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52
7.摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时
这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。
得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。
为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。
在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。
题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?
此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:
后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。
如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?
67×(2+1)-17×(5+1)
=201-102
=99(吨)
99÷〔(5+1)-(2+1)〕
=99÷3
=33(吨)答:原来的乙有33吨。
(33+67)×2+67
=200+67
=267(吨)答:原来的甲有267吨。
分析:
1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;
甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。
2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,
理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)
3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。
4、再求原来的甲即可。
甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米
小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...
1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.
2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?
3.6盆花要摆成4排,每排3盆,应该怎样摆?
4.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?
5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 35
25 15 5
5 25 45
6.5饿连续偶数的和是240,这5个偶数分别是多少?
7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
1 70*53最大 30*75最小
2 64块
3 五角星形
4 4*3*2*1=24
5不能,因为都是奇数,奇数个奇数相加不可能得偶数
6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52
7.摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时
参考资料: 综合
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
还原问题
某数加十三,除以二十,减去五十五,再乘六,结果等于二百七十,求某数
如果那个数是x,那么就是(x+13)/55*6=270那么就是(270、6+55)*20-13=1987
某数加十三,除以二十,减去五十五,再乘六,结果等于二百七十,求某数
如果那个数是x,那么就是(x+13)/55*6=270那么就是(270、6+55)*20-13=1987
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
A、B、C三地一次分布在由西向东的一条道路上,甲、乙、丙分别从A、B、C三地同时出发,甲、乙向东,丙向西。乙、丙在距离B地18千米处相遇,甲、丙在B地相遇,而当甲在C地追上乙时,丙已经走过B地32千米。试问:A、C间的路程是多少千米?
ABC路程答案:
依题意,乙速:丙速为
甲速:丙速为
所以A、C间距离为48+72=120千米
ABC路程答案:
依题意,乙速:丙速为
甲速:丙速为
所以A、C间距离为48+72=120千米
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
四年级下期奥数能力测试卷
班级 姓名
一、 填空
1、找规律
(1)5、10、15、( )、25、( )、35
(2)2、4、8、16、( )、64
(3)1、1、2、3、5、8、( )、( )
(4)(1)、(1、2、1)、(1、2、3、2、1)、(1、2、3、4、3、2、1)、
( )
2、用1、2、3、4组成没有重复数字的四位数,有 种。
3、根据加、减法关系,在 里填上合适的数。
60×7— =195 750—( +89)=250
4、一个数减去1587,小云在计算时把被减数的百位和十位上的数字互换了,结果得1327。正确得数是 。
5、两个数的和是80,其中一个数是另一个数的4倍,这两个数分别是
和 。
6、今年,小红和小明的年龄和是32岁,8年前小红5岁,小明今年 岁。
7、☆÷12=5……Δ,Δ最大是 ,这时的☆是 。
二、 用简便方法计算
1、82+84+79+78+80+83 2、516—56—44—16
3、586×937—586×737 4、54×32+47×32-32
5、1+2+3+…+99+100 6、125×(25×8)×4
三、 应用题
1、举行“小小数学家”比赛,共做10道题目,每做对一题得10分,做错一题倒扣2分,小明共得了64分,他做错了几题?
2.六年级一班42名同学合影留念,拍6寸合影照片可附送2张照片,费用为5.2元,如果加印,每张需加收0。71元,现在每人各得一张照片,平均每人需付多少元?
3.车站的大钟3点的时候敲了3下,用时4秒,在9点时敲9下,问:用多少秒敲完?
4.一个数加上9,乘以9,减去9,再除以9,结果还得9,这个数是多少?
5.有两筐橘子,第一筐重18千克,第二筐重10千克,如果从两筐中取出同样多的橘子后,第一筐剩下的重量是第二筐的3倍,取出的橘子有多少千克?
6.100个人吃100个饼,大人每人吃4个,小孩每4人吃1个,问大人和小孩各有多少人?
7.四年级同学排队,如每行站8人,则多24人,如每行站9人,则多4人。问一共站多少行?有多少个学生?
8.甲乙二人以均匀的速度分别从A.B两地同时出发,相向而行,他们第一次相遇点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求A.B两地之间的距离
四、 看图计算
1、 求下面图形的周长(单位:厘米)
8
10
2.有一个正方形水池,如下图,在他的周围修一个宽8米的花坛,花坛的面积是480平方米。求水池的边长。
班级 姓名
一、 填空
1、找规律
(1)5、10、15、( )、25、( )、35
(2)2、4、8、16、( )、64
(3)1、1、2、3、5、8、( )、( )
(4)(1)、(1、2、1)、(1、2、3、2、1)、(1、2、3、4、3、2、1)、
( )
2、用1、2、3、4组成没有重复数字的四位数,有 种。
3、根据加、减法关系,在 里填上合适的数。
60×7— =195 750—( +89)=250
4、一个数减去1587,小云在计算时把被减数的百位和十位上的数字互换了,结果得1327。正确得数是 。
5、两个数的和是80,其中一个数是另一个数的4倍,这两个数分别是
和 。
6、今年,小红和小明的年龄和是32岁,8年前小红5岁,小明今年 岁。
7、☆÷12=5……Δ,Δ最大是 ,这时的☆是 。
二、 用简便方法计算
1、82+84+79+78+80+83 2、516—56—44—16
3、586×937—586×737 4、54×32+47×32-32
5、1+2+3+…+99+100 6、125×(25×8)×4
三、 应用题
1、举行“小小数学家”比赛,共做10道题目,每做对一题得10分,做错一题倒扣2分,小明共得了64分,他做错了几题?
2.六年级一班42名同学合影留念,拍6寸合影照片可附送2张照片,费用为5.2元,如果加印,每张需加收0。71元,现在每人各得一张照片,平均每人需付多少元?
3.车站的大钟3点的时候敲了3下,用时4秒,在9点时敲9下,问:用多少秒敲完?
4.一个数加上9,乘以9,减去9,再除以9,结果还得9,这个数是多少?
5.有两筐橘子,第一筐重18千克,第二筐重10千克,如果从两筐中取出同样多的橘子后,第一筐剩下的重量是第二筐的3倍,取出的橘子有多少千克?
6.100个人吃100个饼,大人每人吃4个,小孩每4人吃1个,问大人和小孩各有多少人?
7.四年级同学排队,如每行站8人,则多24人,如每行站9人,则多4人。问一共站多少行?有多少个学生?
8.甲乙二人以均匀的速度分别从A.B两地同时出发,相向而行,他们第一次相遇点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求A.B两地之间的距离
四、 看图计算
1、 求下面图形的周长(单位:厘米)
8
10
2.有一个正方形水池,如下图,在他的周围修一个宽8米的花坛,花坛的面积是480平方米。求水池的边长。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |