在直角坐标系已知点A(0,1)B(-4,4)将点B绕点A顺时针旋转90度得到点c顶点在坐标原点的抛物线经过点B 5
2个回答
展开全部
如图,在直角坐标系中,已知点A(0,1),B(-4,4),将点B绕点A顺时针方向90°得到点C;顶点在坐标原点的抛物线经过点B.
(1)求抛物线的解析式和点C的坐标;
(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;
(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.
解:(1)设抛物线的解析式:y=ax2,
∵抛物线经过点B(-4,4),
∴4=a•42,解得a=1/4,
所以抛物线的解析式为:y=1/4x^2;
过点B作BE⊥y轴于E,过点C作CD⊥y轴于D,如图,
∵点B绕点A顺时针方向90°得到点C,
∴Rt△BAE≌Rt△ACD,
∴AD=BE=4,CD=AE=OE-OA=4-1=3,
∴OD=AD+OA=5,
∴C点坐标为(3,5);
(2)设P点坐标为(a,b),过P作PF⊥y轴于F,PH⊥x轴于H,如图,
∵点P在抛物线y=14x2上,
∴b=14a2,
∴d1=14a2,
∵AF=OF-OA=PH-OA=d1-1=14a2-1,PF=a,
在Rt△PAF中,PA=d2=AF2+PF2=(14a2-1)2+a2
=14a2+1,
∴d2=d1+1;
(3)作直线y=1,过C点作y=1 的垂线,交抛物线于P点,则P即为所求的点.
由(1)得AC=5,
∴△PAC的周长=PC+PA+5
=PC+PH+6,
要使PC+PH最小,则C、P、H三点共线,
∴此时P点的横坐标为3,把x=3代入y=14x2,得到y=94,
即P点坐标为(3,94),此时PC+PH=5,
∴△PAC的周长的最小值=5+6=11.
(1)求抛物线的解析式和点C的坐标;
(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;
(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.
解:(1)设抛物线的解析式:y=ax2,
∵抛物线经过点B(-4,4),
∴4=a•42,解得a=1/4,
所以抛物线的解析式为:y=1/4x^2;
过点B作BE⊥y轴于E,过点C作CD⊥y轴于D,如图,
∵点B绕点A顺时针方向90°得到点C,
∴Rt△BAE≌Rt△ACD,
∴AD=BE=4,CD=AE=OE-OA=4-1=3,
∴OD=AD+OA=5,
∴C点坐标为(3,5);
(2)设P点坐标为(a,b),过P作PF⊥y轴于F,PH⊥x轴于H,如图,
∵点P在抛物线y=14x2上,
∴b=14a2,
∴d1=14a2,
∵AF=OF-OA=PH-OA=d1-1=14a2-1,PF=a,
在Rt△PAF中,PA=d2=AF2+PF2=(14a2-1)2+a2
=14a2+1,
∴d2=d1+1;
(3)作直线y=1,过C点作y=1 的垂线,交抛物线于P点,则P即为所求的点.
由(1)得AC=5,
∴△PAC的周长=PC+PA+5
=PC+PH+6,
要使PC+PH最小,则C、P、H三点共线,
∴此时P点的横坐标为3,把x=3代入y=14x2,得到y=94,
即P点坐标为(3,94),此时PC+PH=5,
∴△PAC的周长的最小值=5+6=11.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询