如图, 已知抛物线y=1/2x2+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1

1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP... 1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标; (3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.
请做第3问
P1(1,-2)
P2(2.5,-3.5)
P3(-1.58,0.58)
请写出详细过程
展开
吃拿抓卡要
2012-04-06 · TA获得超过9.8万个赞
知道大有可为答主
回答量:9341
采纳率:93%
帮助的人:5386万
展开全部
既然第一问不需要做,请给出B点坐标
算了,我自己从答案上猜BC解析式好了
直线BC:Y=-X-1
因为P在直线BC上,所以设P点坐标(X,-X-1)
AP²=(2-X)²+(-X-1)²=2X²-2X+5
AC²=2²+(-1)²=5
CP²=X²+(-X-1+1)²=2X²
若三角形为等腰三角形,则有三种可能
(1)AP=AC,此时AP²=AC²
2X²-2X+5=5
2X(X-1)=0
X1=0(为C点坐标,舍去),X2=1。代入Y=-X-1,Y=-2
因此P1(1,-2)
(2)AP=CP,此时AP²=CP²
2X²-2X+5=2X²
-2X=-5,X=2.5
代入BC方程,Y=-3.5
因此P2(2.5,-3.5)
(3)AC=CP,此时AC²=CP²
2X²=5
X²=5/2
X=±√10/2
当X=√10/2,Y=-√10/2-1
P3(√10/2,-√10/2-1)
当X=-√10/2,Y=√10/2-1
P4(-√10/2,√10/2-1)
520柯南1314
2013-03-26 · TA获得超过142个赞
知道答主
回答量:37
采纳率:0%
帮助的人:5.3万
展开全部
解:
(1)将A(2,0),C(0,-1)代入解析式:
2+2b+c=0,c=-1
∴b=-1/2
答:抛物线解析式为y=1/2x²-1/2x-1。
(2)直线AC:y=1/2x-1
∵点E在AC上
∴可设E(x,1/2x-1),其中0<x<2
∵DE⊥x轴于D
∴D(x,0)
∵DE⊥x轴
∴S△DCE=1/2|OD|·|DE|=1/2x(1-1/2x)=-1/4x²+1/2x=-1/4(x-1)²+1/4
∴当x=1时,S△DCE最大
答:D(1,0)。
(3)(分析:首先,有三大种情况,即三角形三条边分别为底,继续往下做,再看有没有细分的情况)
①AC为底
(分析:这种最简单,因为AC边是完全已知的,就可以利用底边中线和垂线合一,可知P点必在AC中垂线上,作AC的中垂线,与BC交点即为P)
AC中点:(1,-1/2)
∴AC中垂线:y+1/2=-2(x-1),即y=-2x+3/2
直线BC:y=-x-1
二者联立,解得:x=5/2,y=-7/2
∴P(5/2,-7/2)
②PC为底
(分析:剩下两种情况都是一腰已知,方法类似,就没什么顺序了。方法就是根据等腰这条性质,以顶点为圆心以腰的长度为半径作圆,与BC的交点即为P)
|AC|=√5,A(2,0)
∴⊙A:(x-2)²+y²=5
直线BC:y=-x-1
二者联立,解得:x=0,y=-1(就是点C,舍)或x=1,y=-2
∴P(1,-2)
③PA为底
(分析:同②,不过显然这次圆与直线有两个交点,所以此情况又有两小情况,总共即为四种情况)
|AC|=√5,C(0,-1)
∴⊙C:x²+(y+1)²=5
直线BC:y=-x-1
二者联立,解得:x=√10/2,y=-√10/2-1或x=-√10/2,y=√10/2-1
∴P(√10/2,-√10/2-1)或(-√10/2,√10/2-1)
答:P的坐标为(5/2,-7/2)或(1,-2)或(√10/2,-√10/2-1)或(-√10/2,√10/2-1)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
彬瑞卜0l
2012-11-25
知道答主
回答量:8
采纳率:0%
帮助的人:1.3万
展开全部
第二问怎么写?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式