如图,在三角形ABC中AC=8,AB=6,BC=10

P为BC上一动点,PE垂直于AB,PF垂直于AC,M为EF中点,则AM的最小值为?... P为BC上一动点,PE垂直于AB,PF垂直于AC,M为EF中点,则AM的最小值为? 展开
飘渺的绿梦
2012-04-09 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3091
采纳率:100%
帮助的人:1774万
展开全部
∵AC=8、AB=6、BC=10,∴AC^2+AB^2=BC^2,∴由勾股定理的逆定理,有:
AE⊥AF,又PE⊥AE、PF⊥AF,∴四边形AEPF是矩形,∴AP、EF互相平分,
而M是EF的中点,∴M一定是AP的中点,∴AM=AP/2。

∵P在BC上,∴由点到直线间的垂线段最短,得:当AP⊥BC时,AP最小,自然AM也最小。
当AP⊥BC时,由三角形面积公式,有:(1/2)BC×AP=(1/2)AB×AC,
∴AP=AB×AC/BC=6×8/10=24/5,∴AM=AP/2=12/5。
∴AM的最小值为 12/5。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式