∫dx/x^2√(1+x^2)
2个回答
推荐于2017-04-13
展开全部
F(x)=∫dx/[(x^2)*((1+x^2)^(1/2))]
设x=tant,则dx=sec²tdt,
∴F(x)=∫dx/[(x^2)*((1+x^2)^(1/2))]
=∫sec²tdt/[tan²t*(1+tan²t)^(1/2)]
=∫sec²tdt/(tan²t*sect)
=∫sectdt/tan²t
=∫(cos²t/sin²t)*(1/cost)*dt
=∫(cost/sin²t)dt
=∫dsint/sin²t
=(-1/sint) +C
设x=tant,则dx=sec²tdt,
∴F(x)=∫dx/[(x^2)*((1+x^2)^(1/2))]
=∫sec²tdt/[tan²t*(1+tan²t)^(1/2)]
=∫sec²tdt/(tan²t*sect)
=∫sectdt/tan²t
=∫(cos²t/sin²t)*(1/cost)*dt
=∫(cost/sin²t)dt
=∫dsint/sin²t
=(-1/sint) +C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询