在平行四边形OABC中,过点C的直线与线段OA,OB分别相交于M,N,向量OM=sinaOA,ON=cosaOB

在平行四边形OABC中,过点C的直线与线段OA,OB分别相交于M,N,向量OM=sina向量OA,向量ON=cosa向量OB,其中a属于[0,π/2],求sin2a=... 在平行四边形OABC中,过点C的直线与线段OA,OB分别相交于M,N,向量OM=sina向量OA,向量ON=cosa向量OB,其中a属于[0,π/2],求sin2a= 展开
飘渺的绿梦
2012-04-09 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3091
采纳率:100%
帮助的人:1724万
展开全部
∵OABC是平行四边形,∴向量OC=向量AB=向量OB-向量OA。
∵向量OM=sinα向量OA、向量ON=cosα向量OB,
∴向量MN=向量ON-向量OM=cosα向量OB-sinα向量OA。
 向量NC=向量OC-向量ON=向量OB-向量OA-cosα向量OB。

∵向量MN、向量NC共线,∴向量MN=k向量NC,其中k为非零实数。
∴cosα向量OB-sinα向量OA=k(向量OB-向量OA-cosα向量OB),
∴(cosα-k+kcosα)向量OB=(sinα-k)向量OA。

∵向量OA、向量OB不共线,∴cosα-k+kcosα=0、sinα-k=0,
∴cosα-sinα+sinαcosα=0,∴sinαcosα=sinα-cosα,
∴(sinαcosα)^2=(sinα)^2-2sinαcosα+(cosα)^2=1-sin2α,
∴(1/4)(sin2α)^2=1-sin2α,∴(sin2α)^2+4sin2α=4,
∴(sin2α+2)^2=8。

∵α∈[0,π/2],∴2α∈[0,π],∴sin2α≧0。
∴sin2α+2=2√2,∴sin2α=2√2-2。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式