谁能举个例子说明原函数可导但它的导数不一定连续

这个函数的导数依然处处连续,我想要个导数不连续的例子... 这个函数的导数依然处处连续,我想要个导数不连续的例子 展开
百了居士
推荐于2017-09-05 · TA获得超过1.5万个赞
知道大有可为答主
回答量:2683
采纳率:0%
帮助的人:0
展开全部
f(x)=x^2,(x≥0),f(x)=-x^2,(x<0).
f(x)处处可导,f′(x)=2|x|,在x=0不可导。
至于更复杂的情况,如f(x)处处可导,f′(x)处处连续,但处处不可导,这种例子是有的,当然这种例子相当复杂,不是一个短帖能写清楚的。你可以先去找到处处连续,但处处不可导的函数,把这种函数积分一次,就可得到这种例子。

不好意思,昨天把题目看错了,今天改正。
f(x)=x^2*sin(1/x),(x≠0时),f(0)=0.
f′(x)=2x*sin(1/x)-cos(1/x),(x≠0时),f′(0)=0.
f′(x)在x=0不连续。
lalary123
2012-10-09 · TA获得超过201个赞
知道答主
回答量:64
采纳率:0%
帮助的人:53.1万
展开全部
你的命题是错误的吧!
f(x)=x^2*sin(1/x),(x≠0时),f(0)=0。这个函数在x=0处不可导。常见错误就是先假设在x=0处可导,然后求出,左右导数相等(但“无法得出具体值?”)。按照求导公式得出的结果,导数在此处震荡,但不能说不连续!!!只能说这种方法有局限性……
那么我们用最根本的方法——定义法!!!
可导 等价于 左右导数存在且相等,值为零。
下面是关键!
连续的定义,就是左右极限相等,且与函数值相等!!!(该函数的左右导数就是导函数在x=x0处的左右极限)。
这下清楚了吧,两者原本就是等价的。
小结一下:数学里面遇到瓶颈时,不妨回过头来看看最原始的信息——定义。
PS:五年前的问题了,估计无人问津了。还是写出来让大家参考参考!!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式