已知向量a=(Sin θ,1).向量b=(1,cos θ),-π/2<θ<π/2。
2个回答
展开全部
解:1. ∵向量a⊥向量b, ∴∴∴sinθ1+1*cosθ=0
tanθ+1=0.
tanθ=-1.
θ=kπ-π/4.
2. |向量a+向量b|^2=(a+b)^2=a^2+2ab+b^2.
=sin^2θ+1+2(sinθ*1+1*cosθ)+cos^2θ+1.
=sin^2θ+cos^2θ+2(sinθ+cosθ)+2.
=2*√2sin(θ+45°)+3.
|a+b|=√[3+2√2*sin(θ+45°)]
当sin(θ+45°)=1, |a+b|max=√(3+2√2).
tanθ+1=0.
tanθ=-1.
θ=kπ-π/4.
2. |向量a+向量b|^2=(a+b)^2=a^2+2ab+b^2.
=sin^2θ+1+2(sinθ*1+1*cosθ)+cos^2θ+1.
=sin^2θ+cos^2θ+2(sinθ+cosθ)+2.
=2*√2sin(θ+45°)+3.
|a+b|=√[3+2√2*sin(θ+45°)]
当sin(θ+45°)=1, |a+b|max=√(3+2√2).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询