如图,若直线y=-x+16交x轴于点e,交y轴于点d,点a(m,m)在直线de上,双曲线y=k/x与直线ao交于a.bl两点
http://wenwen.soso.com/z/q214501711.htm图和题目看这里...
http://wenwen.soso.com/z/q214501711.htm 图和题目看这里
展开
3个回答
展开全部
(1)将A(m,m)代入y=-x+16,
m=-m+16,∴m=8,即A(8,8)
由A过y=k/x,∴k=8×8=64,
即y=64/x。
(2)由A(8,8),F(0,-16)
∴LAF:y=3x-16,
∵LAF过BC,
令y=-8时,x=8/3,∴H(8/3,-8),
AH²+OH²=(8/3)²+8²+(8-8/3)²+(8+8)²
=640.
AC²=24²+8²
=640. ∴AH+OH=OC。
解法二:由于BH是OF的垂直平分线,∴OH=OF,
只要证明AF=OC即可,分别过A作AM⊥y轴于M,
过C作CN⊥x轴于N,
由AM=CN=8,
MF=EO=24,
∴△AMF≌△CNO(SAS)
得AF=AH+OH=OC。
第三问不清楚,无法判断。
①am²+bn²(什么意思?)
②am+= bn=mn(什么意思?)
AM²+BN²=AO²≥128.
证明:AM²=8²+(8-M)²,BN²=8²+(N-8)²
AM²+BN²=128+128-16M-16N+M²+N²,
当AM=BN=8时,AM²+BN²=128,
当AM=BN≠8时,AM²+BN²>128.。
m=-m+16,∴m=8,即A(8,8)
由A过y=k/x,∴k=8×8=64,
即y=64/x。
(2)由A(8,8),F(0,-16)
∴LAF:y=3x-16,
∵LAF过BC,
令y=-8时,x=8/3,∴H(8/3,-8),
AH²+OH²=(8/3)²+8²+(8-8/3)²+(8+8)²
=640.
AC²=24²+8²
=640. ∴AH+OH=OC。
解法二:由于BH是OF的垂直平分线,∴OH=OF,
只要证明AF=OC即可,分别过A作AM⊥y轴于M,
过C作CN⊥x轴于N,
由AM=CN=8,
MF=EO=24,
∴△AMF≌△CNO(SAS)
得AF=AH+OH=OC。
第三问不清楚,无法判断。
①am²+bn²(什么意思?)
②am+= bn=mn(什么意思?)
AM²+BN²=AO²≥128.
证明:AM²=8²+(8-M)²,BN²=8²+(N-8)²
AM²+BN²=128+128-16M-16N+M²+N²,
当AM=BN=8时,AM²+BN²=128,
当AM=BN≠8时,AM²+BN²>128.。
展开全部
(1)将A(m,m)代入y=-x+16,
m=-m+16,∴m=8,即A(8,8)
由A过y=k/x,∴k=8×8=64,
即y=64/x。
(2)由A(8,8),F(0,-16)
∴LAF:y=3x-16,
∵LAF过BC,
令y=-8时,x=8/3,∴H(8/3,-8),
AH²+OH²=(8/3)²+8²+(8-8/3)²+(8+8)²
=640.
AC²=24²+8²
=640. ∴AH+OH=OC。
解法二:由于BH是OF的垂直平分线,∴OH=OF,
只要证明AF=OC即可,分别过A作AM⊥y轴于M,
过C作CN⊥x轴于N,
由AM=CN=8,
MF=EO=24,
∴△AMF≌△CNO(SAS)
得AF=AH+OH=OC。
(3)
作AT∥QB交x轴于T
∵AO=OB=8√10
易证△ONB≌△OAT(ASA)
∴NO=OT BN=AT
连MT
易证△ONM≌△OMT(SAS)
∴MT=MN
∵AT∥QB
∴∠Q+∠MAT=180º
∵∠Q=90º
∴∠MAT=90º
∴MA^2+AT^2=MT^2
∴MA^2+NB^2=MN^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高中数学呀这是,如果你是高中生,就拿着去问数学老师好了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询