4.1.若平面内有n条直线,其中任何两条不平行,且任何三条不共点(即不相交于一点),则这n条直线将平面分成了 5

4.1.若平面内有n条直线,其中任何两条不平行,且任何三条不共点(即不相交于一点),则这n条直线将平面分成了几部分... 4.1.若平面内有n条直线,其中任何两条不平行,且任何三条不共点(即不相交于一点),则这n条直线将平面分成了几部分 展开
班丘寄蓝Sh
2007-12-06 · TA获得超过7.6万个赞
知道大有可为答主
回答量:5663
采纳率:28%
帮助的人:4099万
展开全部
一条直线显然可以将平面分成2部分,再考虑一般情况,假设(n-1)条直线最多可以将平面分成a部分,那么再加上一条直线,这条直线最多可以与原来的每一条直线都相交,也就是说与(n-1)条直线都相交,从而产生(n-1)个交点,该直线被分成n部分,而每一部分将所在区域一分为二,从而多出了n个部分,有a+n部分,依次累加,
便可以得到n条直线最多可以
将平面分成 ((N+1)*N)/2+1部分
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式