用数学归纳法证明 1/n+1/(n+1)+1/(n+2)+...+1/2n<1(n≥3)成立 要速度
2个回答
展开全部
(1)n=3时,左式=1/3+1/4+1/5+1/6=3/4+1/5<1,等式成立
(2)假设n=k(k≥3)是等式成立,即1/k+1/(k+1)+1/(k+2)+...+1/2k<1
因为k≥3时有,1/k-[1/(2k+1)+1/2(k+1)]=(3k+2)/[k(2k+1)(2k+2)]>0,
即1/k>1/(2k+1)+1/2(k+1)
则当n=k+1时,
1/(k+1)+1/(k+2)+1/(k+3)+...+1/2k+1/(2k+1)+1/2(k+1)<1/k+1/(k+1)+1/(k+2)+...+1/2k<1
等式成立
(2)假设n=k(k≥3)是等式成立,即1/k+1/(k+1)+1/(k+2)+...+1/2k<1
因为k≥3时有,1/k-[1/(2k+1)+1/2(k+1)]=(3k+2)/[k(2k+1)(2k+2)]>0,
即1/k>1/(2k+1)+1/2(k+1)
则当n=k+1时,
1/(k+1)+1/(k+2)+1/(k+3)+...+1/2k+1/(2k+1)+1/2(k+1)<1/k+1/(k+1)+1/(k+2)+...+1/2k<1
等式成立
追问
1/k-[1/(2k+1)+1/2(k+1)]=(3k+2)/[k(2k+1)(2k+2)]>0,
这步是怎么来的 说的详细一点
追答
通分
1/k-[1/(2k+1)+1/2(k+1)]
=[(4k^2+6k+3)-(2k^2+2k)-(2k^2+k)]/[k(2k+1)(2k+2)]
=(3k+2)/[k(2k+1)(2k+2)]>0,
展开全部
A.不等式法:记Sn=1/n+1/(n+1)+.......+1/2n, Sn+1 -Sn =1/(2n+2)+1/(2n+1)-1/n<0,即Sn+1<Sn,
所以Sn<=S3=1/3+1/4+1/5+1/6<1,
题目得证
B.数归法:
(1)当n=3成立,即S3<1,
(2)假设当n=k(k>=3),成立,即Sk <1,
因为Sk+1 =Sk-1/n+1/(2n+1)+1/(2k+2)<Sk <1,
即当n=k+1,也成立,
综合以上知道命题成立,即1/n+1/(n+1)+1/(n+2)+...+1/2n<1对n≥3成立
所以Sn<=S3=1/3+1/4+1/5+1/6<1,
题目得证
B.数归法:
(1)当n=3成立,即S3<1,
(2)假设当n=k(k>=3),成立,即Sk <1,
因为Sk+1 =Sk-1/n+1/(2n+1)+1/(2k+2)<Sk <1,
即当n=k+1,也成立,
综合以上知道命题成立,即1/n+1/(n+1)+1/(n+2)+...+1/2n<1对n≥3成立
追问
Sk+1 =Sk-1/n+1/(2n+1)+1/(2k+2)<Sk <1,
这步怎么来的 说的详细一点
追答
Sk+1 =1/(n+1)+1/(n+2)+......+1/2n+1/(2n+1)+1/(2n+2)
=( 1/n+1/(n+1)+1/(n+2)+......+1/2n )+1/(2n+1)+1/(2n+2)-1/n
=Sk- 1/n + 1/(2n+1)+1/(2k+2)<Sk-1/n+ 1/2n+1/2n =Sk<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |