椭圆x²/25+y²/9=1的焦点F1,点P在椭圆上,若线段PF1的中点M在y轴上,则/PF1/=?
展开全部
解:
(x^2)/25+(y^2)/9=1
(x^2)/(5^2)+(y^2)/(3^2)=1
a=5、b=3,焦点在x轴上,坐标是:(4,0)和(-4,0)。F1点坐标是(-4,0)
因为:P在椭圆上,
所以:P点坐标是(x,(3/5)√(25-x^2))
因为:M在y轴上,
所以:M点坐标是(4,(3/10)√(25-x^2))
|PF1|=√{(x-4)^2+[(3/5)√(25-x^2)-(3/10)√(25-x^2)]^2}
|PF1|=√{(x-4)^2+[(3/10)√(25-x^2)]^2}
|PF1|=√[(x-4)^2+(9/100)(25-x^2)]
|PF1|=√[x^2-8x+16+9/4-(25/100)x^2]
|PF1|=√[(75/100)x^2-8x+73/4]
|PF1|=√[(75/100)x^2-(800/100)x+1825/100]
|PF1|=√[(25/100)(3x^2-32x+73)]
|PF1|=(1/2)√(3x^2-32x+73)
(x^2)/25+(y^2)/9=1
(x^2)/(5^2)+(y^2)/(3^2)=1
a=5、b=3,焦点在x轴上,坐标是:(4,0)和(-4,0)。F1点坐标是(-4,0)
因为:P在椭圆上,
所以:P点坐标是(x,(3/5)√(25-x^2))
因为:M在y轴上,
所以:M点坐标是(4,(3/10)√(25-x^2))
|PF1|=√{(x-4)^2+[(3/5)√(25-x^2)-(3/10)√(25-x^2)]^2}
|PF1|=√{(x-4)^2+[(3/10)√(25-x^2)]^2}
|PF1|=√[(x-4)^2+(9/100)(25-x^2)]
|PF1|=√[x^2-8x+16+9/4-(25/100)x^2]
|PF1|=√[(75/100)x^2-8x+73/4]
|PF1|=√[(75/100)x^2-(800/100)x+1825/100]
|PF1|=√[(25/100)(3x^2-32x+73)]
|PF1|=(1/2)√(3x^2-32x+73)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询