从1.2.3.4.5.。。。。N中,任取57个数,使57个数必有2个数的差是13,问N的最大值是几?

攞你命三千
2012-04-16 · TA获得超过1.9万个赞
知道大有可为答主
回答量:9624
采纳率:61%
帮助的人:2576万
展开全部
参考http://zhidao.baidu.com/question/245753410.html的解答。

在1、2、3、…、n中,我们考虑它们对13的余数,然后按其结果进行分组:
1、2、3、…、13 (把余数是0的,也就是能整除的余数记为13)
在这13组数中:每个数都可以表示成 13m+k的形式,其中k=1、2、…、13,而 m=0、1、2、…我们称k为余数,m为基数。

一、任意两组之间的数,因为余数不相等,所以其差不可能是13的倍数,也就不可能是13
二、在同一组数中,因为余数相等,任意两个数的差肯定是13的倍数。如果同一组中有相邻基数的同余序列,那么它们的差就是13,
要使57个数被分配在13个序列中,同一组数不能取相邻基数的。
57=13*4+5=(8+5)*4+5
要使57个数之间任意两个都不等13,n取最小值时,每组数中被分配的基数差要>=2,在13个序列中,有8个长度为8,5个长度为9,那么n=8*8+5*9=109,所以,要使这57个数必有两个数的差为13,则n的最大值是108
[以上是解法和证明过程,下面是具体的取法]
具体到数的取法上,有两个方面:
A、在1,2,3,...108这组数中,我们可以这么取:
1-13
27-39
53-65
79-91
4组各13个,再加4个 (13*4+4=56)
105,106,107,108
这56个数可以保证两两的差都不等于13,再加进去1-108中其他的数肯定会与前面四组的基相差1,结果差就会是13
这就可以证明,从1-108中取57个肯定会有两个数的差是13

B、
A、在1,2,3,...108这组数中,我们可以这么取:
1-13
27-39
53-65
79-91
4组各13个,再加5个 (13*4+5=57)
105,106,107,108,109
这57个数可以保证两两的差都不等于13
所以要使取得57个数中肯定有两个数的差是13,那么n=108是最大的。

参考资料: 百度知道:http://zhidao.baidu.com/question/245753410.html

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式