利用二重积分的性质,比较下列积分的大小
∫D∫(x+y)^2dσ与∫D∫(x+y)^3dσD是由圆周(x-2)^2+(y-1)^2=2所围成的闭区域...
∫D∫(x+y)^2dσ 与∫D∫(x+y)^3dσ D是由圆周(x-2)^2+(y-1)^2=2所围成的闭区域
展开
1个回答
展开全部
先画出D的区域:圆心在(2,1),半径为根号2的圆,再画出直线x+y=1,
看图得x+y在D区域内x+y>1,所以(x+y)^3 > (x+y)^2
即 ∫D∫(x+y)^2dσ < ∫D∫(x+y)^3dσ
看图得x+y在D区域内x+y>1,所以(x+y)^3 > (x+y)^2
即 ∫D∫(x+y)^2dσ < ∫D∫(x+y)^3dσ
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询