n∈R+用放缩法证明1+1/2^2+1/3^2+...+1/n^2<5/3
1个回答
展开全部
证明:
n>1时
1/n²<1/(n²-1)=1/[(n-1)(n+1)]=[1/(n-1)-1/(n+1)]/2
所以
左<1+1/4+(1/2)[1/2-1/4+1/3-1/5+1/4-1/6+......+1/(n-2)-1/n+1/(n-1)-1/(n+1)]
=1+1/4+(1/2)[1/2+1/3-1/n-1/(n+1)]
<5/4+(1/2)*(1/2+1/3)
=5/4+(1/2)*(5/6)
=5/4+5/12
=5/3
得证。
n>1时
1/n²<1/(n²-1)=1/[(n-1)(n+1)]=[1/(n-1)-1/(n+1)]/2
所以
左<1+1/4+(1/2)[1/2-1/4+1/3-1/5+1/4-1/6+......+1/(n-2)-1/n+1/(n-1)-1/(n+1)]
=1+1/4+(1/2)[1/2+1/3-1/n-1/(n+1)]
<5/4+(1/2)*(1/2+1/3)
=5/4+(1/2)*(5/6)
=5/4+5/12
=5/3
得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询