3个回答
展开全部
证明:
在AC上取一点E,使∠AED=∠BCD
∵A,B,C,D四点共圆
∴∠DAC=∠DBC
∴⊿DAE∽⊿DBC(AA‘)
∴AD/BD=AE/BC
∴AD×BC=BD×AE..............................①
∵∠DEC=180º-∠AED
∠DAB=180º-∠DBC
∴∠DEC=∠DAB
又∵∠ACD=∠ABD
∴⊿DEC∽⊿DAB(AA’)
∴CD/BD=CE/AB
∴AB×CD=BD×CE........................②
①+②得
AB×CD+AD×BC=BD×(AE+CE)=BD×AC
∴AC×BD=AB×CD+AD×BC
在AC上取一点E,使∠AED=∠BCD
∵A,B,C,D四点共圆
∴∠DAC=∠DBC
∴⊿DAE∽⊿DBC(AA‘)
∴AD/BD=AE/BC
∴AD×BC=BD×AE..............................①
∵∠DEC=180º-∠AED
∠DAB=180º-∠DBC
∴∠DEC=∠DAB
又∵∠ACD=∠ABD
∴⊿DEC∽⊿DAB(AA’)
∴CD/BD=CE/AB
∴AB×CD=BD×CE........................②
①+②得
AB×CD+AD×BC=BD×(AE+CE)=BD×AC
∴AC×BD=AB×CD+AD×BC
2012-04-17
展开全部
先画一个圆,内接四边形ABCD
连接AC,BD
证明
在BD 上找一点M
作∠BAM=∠CAD
因为 ∠ABD=∠ACD
所以 三角形ABM 相似于 三角形ACD
AB/BM=AC/CD 变形
AB*CD=AC*BM
而且 ∠MAD=∠BAC 又因为 ∠ADM=∠ACB
所以 三角形ADM 相似于 三角形ACB
AD/DM=AC/CB 变形
AD*BC=AC*DM
所以 AD*BC+AB*CD=(DM+BM)*AC=AC*BD
则是托勒密定理,证四点共圆要用的
连接AC,BD
证明
在BD 上找一点M
作∠BAM=∠CAD
因为 ∠ABD=∠ACD
所以 三角形ABM 相似于 三角形ACD
AB/BM=AC/CD 变形
AB*CD=AC*BM
而且 ∠MAD=∠BAC 又因为 ∠ADM=∠ACB
所以 三角形ADM 相似于 三角形ACB
AD/DM=AC/CB 变形
AD*BC=AC*DM
所以 AD*BC+AB*CD=(DM+BM)*AC=AC*BD
则是托勒密定理,证四点共圆要用的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:连接CO并延长交⊙O于P,连接BP,
∵OE⊥BC,∠PBC=90°,BE=EC,PO=OC,
∴OE=1 2 BP,
又∵∠1=∠2,∠PBD=90°-∠1,∠ADB=90°-∠2,
∴∠PBD=∠ADB,
∴ 弧PD =弧 AB ,
∴ 弧PB = 弧AD ,
故BP=AD,
即OE=1/ 2 BP=1/2 AD.
∵OE⊥BC,∠PBC=90°,BE=EC,PO=OC,
∴OE=1 2 BP,
又∵∠1=∠2,∠PBD=90°-∠1,∠ADB=90°-∠2,
∴∠PBD=∠ADB,
∴ 弧PD =弧 AB ,
∴ 弧PB = 弧AD ,
故BP=AD,
即OE=1/ 2 BP=1/2 AD.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询