
求数项级数∑(n=1)1/[n*(2n+1)*(2^n)]的和
求数项级数∑(n=1)1/[n*(2n+1)*(2^n)]的和,解题过程中的问题:(1)怎样由所给定的数项级数想到幂级数∑(n=1)[x^(2n)]/[n*(2n+1)]...
求数项级数∑(n=1)1/[n*(2n+1)*(2^n)]的和,解题过程中的问题:
(1)怎样由所给定的数项级数想到幂级数∑(n=1)[x^(2n)]/[n*(2n+1)]
(2)当求出幂级数的收敛域为[-1,1],为什么设s(x)=x*∑(n=1)[x^(2n)]/[n*(2n+1)]
时,x的范围为(-1,1)
(3)∑(n=1)x^[2(n-1)]为什么等于1/[1-(x^2)]
(4)为什么当求出∫(0,x)s''(x)dx=∫(0,x)(2x)/[1-(x^2)]dx=-ln[1-(x^2)]时,不能直接得出s'(x)=-ln[1-(x^2)],还得说明一下因为s'(0)=0,才能得此结论 展开
(1)怎样由所给定的数项级数想到幂级数∑(n=1)[x^(2n)]/[n*(2n+1)]
(2)当求出幂级数的收敛域为[-1,1],为什么设s(x)=x*∑(n=1)[x^(2n)]/[n*(2n+1)]
时,x的范围为(-1,1)
(3)∑(n=1)x^[2(n-1)]为什么等于1/[1-(x^2)]
(4)为什么当求出∫(0,x)s''(x)dx=∫(0,x)(2x)/[1-(x^2)]dx=-ln[1-(x^2)]时,不能直接得出s'(x)=-ln[1-(x^2)],还得说明一下因为s'(0)=0,才能得此结论 展开
3个回答
展开全部
1、通项中有2^n,与幂级数形式相同,因此将2换为x,即考虑某个幂级数在x=2的函数值。
2、幂级数与多项式类似,能无穷次求导。但要注意,设幂级数时尽量弄出求导后会变的简单的幂级数。本题中不乘以x,求导后系数更麻烦,乘以x后求导恰好能消掉2n+1。其实做多了后第一眼就知道应该设幂级数是x^(2n+1),而不是x^(2n)。
3、等级级数的和。
4、Newton -Leibiniz公式:F(x)-F(a)=积分(从a到x)F'(t)dt。
没有F(a)的话,那做积分只能得到一个原函数,但积分得到的原函数是否与题目给的函数相同是不知道的,必须再要求在某一点的函数值相等才行。因此题目中应该是S'(x)-S'(0)=积分(从0到x)S''(t)dt。
2、幂级数与多项式类似,能无穷次求导。但要注意,设幂级数时尽量弄出求导后会变的简单的幂级数。本题中不乘以x,求导后系数更麻烦,乘以x后求导恰好能消掉2n+1。其实做多了后第一眼就知道应该设幂级数是x^(2n+1),而不是x^(2n)。
3、等级级数的和。
4、Newton -Leibiniz公式:F(x)-F(a)=积分(从a到x)F'(t)dt。
没有F(a)的话,那做积分只能得到一个原函数,但积分得到的原函数是否与题目给的函数相同是不知道的,必须再要求在某一点的函数值相等才行。因此题目中应该是S'(x)-S'(0)=积分(从0到x)S''(t)dt。
展开全部
这是大一的高等数学吧!
(1)第一个问题我不知道你到底问的什么?
(2)因为肯定要这样设S(X)然后才能用积分求和啊,而且他的收敛域在-1到1,X的范围自然是=1到1,如果去-1或1,这个级数就不是收敛级数了
(3)“1/[1-(x^2)]”就是他的和函数!
(4)在“0”的那点要考虑到他的连续性啊!
(1)第一个问题我不知道你到底问的什么?
(2)因为肯定要这样设S(X)然后才能用积分求和啊,而且他的收敛域在-1到1,X的范围自然是=1到1,如果去-1或1,这个级数就不是收敛级数了
(3)“1/[1-(x^2)]”就是他的和函数!
(4)在“0”的那点要考虑到他的连续性啊!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大哥 我不晓得 大家知道不啊~~~~~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询