高中数学——几何证明选讲问题
在三角形ABC中,点D是BC的中点,点E在AB上,且AE:EB=1:2,AD与CE相交于点F,求S△ABC:S△FDC的值我觉得图是这个样……要过程,谢谢~好的给加分哦~...
在三角形ABC中,点D是BC的中点,点E在AB上,且AE:EB=1:2,AD与CE相交于点F,求S△ABC:S△FDC的值
我觉得图是这个样……要过程,谢谢~好的给加分哦~~ 展开
我觉得图是这个样……要过程,谢谢~好的给加分哦~~ 展开
2个回答
展开全部
解:过点D作DG‖AB于G
∵D为BC中点DG‖BE
∴DG为△CBE的中位线
∴DG=½BE
∵AE:EB=1:2
∴AE=½BE
∴AE=DG
∵DG‖AB
∴∠AEF=∠DGF,∠EAF=∠GDF
∵∠AEF=∠DGF,AE=DG∠EAF=∠GDF
∴△AEF≌△DGF
∴AF=FD
(然后你再证明三角形FDC的面积等于三角形ADC的面积的一半,而三角形ADC的面积又等于三角形ABC面积的一半,所以三角形FDC的面积等于三角形ABC的面积的四分之一)即4∶1
∵D为BC中点DG‖BE
∴DG为△CBE的中位线
∴DG=½BE
∵AE:EB=1:2
∴AE=½BE
∴AE=DG
∵DG‖AB
∴∠AEF=∠DGF,∠EAF=∠GDF
∵∠AEF=∠DGF,AE=DG∠EAF=∠GDF
∴△AEF≌△DGF
∴AF=FD
(然后你再证明三角形FDC的面积等于三角形ADC的面积的一半,而三角形ADC的面积又等于三角形ABC面积的一半,所以三角形FDC的面积等于三角形ABC的面积的四分之一)即4∶1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询