已知命题p:“任意x∈[1,2],x2-a≥0”,命题q:“存在x∈R,x2+2ax+2-a=0”,若命题“p或q”是真命题,
2012-04-20 · 知道合伙人教育行家
关注
展开全部
解:
对于命题p
x2-a≥0
x2≥a
x∈[1,2]
得a≤1
对于命题q,
x2+2ax+2-a=0
△=(2a)²-4*(2-a)=4a²+4a-8=4(a²+a-2)=4(a+2)(a-1)≥0
解得a≥1或者a≤-2
或 取并集得
a属于一切实数。
“p且q”是假命题
p是假命题时
a>4
q是假命题时
-2<a<1
且 取交集得
a不存在
对于命题p
x2-a≥0
x2≥a
x∈[1,2]
得a≤1
对于命题q,
x2+2ax+2-a=0
△=(2a)²-4*(2-a)=4a²+4a-8=4(a²+a-2)=4(a+2)(a-1)≥0
解得a≥1或者a≤-2
或 取并集得
a属于一切实数。
“p且q”是假命题
p是假命题时
a>4
q是假命题时
-2<a<1
且 取交集得
a不存在
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询