设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足S5S6+15=0则d的取值范围是?
3个回答
展开全部
解:
S5=5a1+10d
S6=6a1+15d
S5S6+15=0
(5a1+10d)(6a1+15d)+15=0
整理,得
(a1+2d)(2a1+5d)+1=0
2a1²+9da1+10d²+1=0
要a1为实数,则方程判别式≥0
(9d)²-4×2×(10d²+1)≥0
整理,得
d²≥8
d≥2√2或d≤-2√2
等差数列前n项和公式得:S5 = 5*a1 + 10*d S6 = 6*a1+ 15*d
所以 S5S6+15=0 可写成 (5*a1 + 10*d) * (6*a1 + 15*d) + 15 = 0
即: 5(a1 + 2d)* 3(2*a1 + 5*d) +15 =0
(a1 + 2d)* (2*a1 + 5*d) +1 =0
得到 :2*a1^2 + 9d*a1 + 10d^2 + 1 = 0
将它看做关于 a1 的方程,有解条件为: △ ≥ 0
即:(9d)^2 — 4*2*(10d^2 + 1)≥ 0
得: d^2 ≥ 8
则 d 的范围是 d≥2√2 或 d≤ — 2√2
S5=5a1+10d
S6=6a1+15d
S5S6+15=0
(5a1+10d)(6a1+15d)+15=0
整理,得
(a1+2d)(2a1+5d)+1=0
2a1²+9da1+10d²+1=0
要a1为实数,则方程判别式≥0
(9d)²-4×2×(10d²+1)≥0
整理,得
d²≥8
d≥2√2或d≤-2√2
等差数列前n项和公式得:S5 = 5*a1 + 10*d S6 = 6*a1+ 15*d
所以 S5S6+15=0 可写成 (5*a1 + 10*d) * (6*a1 + 15*d) + 15 = 0
即: 5(a1 + 2d)* 3(2*a1 + 5*d) +15 =0
(a1 + 2d)* (2*a1 + 5*d) +1 =0
得到 :2*a1^2 + 9d*a1 + 10d^2 + 1 = 0
将它看做关于 a1 的方程,有解条件为: △ ≥ 0
即:(9d)^2 — 4*2*(10d^2 + 1)≥ 0
得: d^2 ≥ 8
则 d 的范围是 d≥2√2 或 d≤ — 2√2
展开全部
等差数列前n项和公式得:S5 = 5*a1 + 10*d S6 = 6*a1 + 15*d
所以 S5S6+15=0 可写成 (5*a1 + 10*d) * (6*a1 + 15*d) + 15 = 0
即: 5(a1 + 2d)* 3(2*a1 + 5*d) +15 =0
(a1 + 2d)* (2*a1 + 5*d) +1 =0
得到 :2*a1^2 + 9d*a1 + 10d^2 + 1 = 0
将它看做关于 a1 的方程,有解条件为: △ ≥ 0
即:(9d)^2 — 4*2*(10d^2 + 1)≥ 0
得: d^2 ≥ 8
则 d 的范围是 d≥2√2 或 d≤ — 2√2
所以 S5S6+15=0 可写成 (5*a1 + 10*d) * (6*a1 + 15*d) + 15 = 0
即: 5(a1 + 2d)* 3(2*a1 + 5*d) +15 =0
(a1 + 2d)* (2*a1 + 5*d) +1 =0
得到 :2*a1^2 + 9d*a1 + 10d^2 + 1 = 0
将它看做关于 a1 的方程,有解条件为: △ ≥ 0
即:(9d)^2 — 4*2*(10d^2 + 1)≥ 0
得: d^2 ≥ 8
则 d 的范围是 d≥2√2 或 d≤ — 2√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询