已知数列{an}的前n项和为Sn,且有Sn=n^2/2+11n/2,数列{bn}满足bn+2-2bn+1+bn=(n∈N+),且b3=11,前9项和

已知数列{an}的前n项和为Sn,且有Sn=n^2/2+11n/2,数列{bn}满足bn+2-2bn+1+bn=(n∈N+),且b3=11,前9项和为153(1)求数列{... 已知数列{an}的前n项和为Sn,且有Sn=n^2/2+11n/2,数列{bn}满足bn+2-2bn+1+bn=(n∈N+),且b3=11,前9项和为153
(1)求数列{an}、{bn}的通项公式;
(2)设cn=3/(2an-11)(2bn-1),数列{cn}的前n项和为Tn,求使不等式Tn>k/57对一切n∈N+都成立的最大正整数k的值;
主要是最后一小题的求k的值,Tn我已经算出来了
展开
xuzhouliuying
高粉答主

2012-04-21 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
解:
1、
a1=S1=1/2+11/2=6
Sn=n²/2 +11n/2
S(n-1)=(n-1)²/2 +11(n-1)/2
S(n-1)-Sn=an=n²/2 +11n/2 -(n-1)²/2 -11(n-1)/2=n+5
n=1时,a1=1+5=6,同样满足。
数列{an}的通项公式为an=n+5。
b(n+2)-2b(n+1)+bn=0
b(n+2)-b(n+1)=b(n+1)-bn
数列{bn}是等差数列,设公差为d。
S9'=9b1+36d=9(b1+4d)=9b5=153
b5=17
b5-b3=2d=17-11=6 d=3
b1=b3-2d=11-6=5
bn=5+3(n-1)=3n+2
数列{bn}的通项公式为bn=3n+2。
2、
cn=3/[(2an-11)(2bn-1)]=2/[2(n+5)-11][2(3n+2)-1]=2/[(2n-1)(6n+3)]
=(2/3)/[(2n-1)(2n+1)]=(1/3)[1/(2n-1)-1/(2n+1)]
Tn=c1+c2+...+cn
=(1/3)[1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]
=(1/3)[1-1/(2n+1)]
=2n/[3×(2n+1)]
=2/[3×(2+ 1/n)]
随n增大,1/n减小,2+ 1/n减小,3×(2+ 1/n)减小,2/[3×(2+ 1/n)]增大,当n=1时,Tn取得最小值Tmin=2/[3×(2+1)]=2/9
Tn>k/57对于一切n∈N+都成立,则当Tn取得最小值时等式同样成立。
2/9>k/57
k<38/3 又k为正整数,k≤12
满足题意的最大正整数k的值为12。

如果你前面都已经算出来了,Tn也算出来了,最后算k不过是分分钟搞定的事。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式