菱形ABCD的边长为2,BD=2,E、F分别是边AD、CD上的两个动点,且满足AE+CF=2
展开全部
首先:边长为a的等边三角形面积S=√3·a²/4 ﹙这个结论你自己可以求证﹚
解答:
∵菱形ABCD ∴AB=AD=2 又∵BD=2 ∴⊿ABD是等边三角形 ∴∠A=∠ABD=60º
∴菱形ABCD中 ∠ADC=∠ABD=120º ∴∠CBD=60º=∠BDC﹙菱形对角线的性质﹚
∴∠A=∠BDC=60º
∵CD=2即CF+DF=2,又∵AE+CF=2 ∴AE=DF
又∵AB=BD=2 ∴⊿ABE≌⊿DBF ﹙SAS﹚ ∴BE=BF ∠ABE=∠DBF
∵∠ABD=60º即∠ABE+∠EBD=60º ∴∠DBF+∠EBD=60º即∠EBF=60º
∴⊿EBF是等边三角形 ∴S⊿BEF=√3·BE²/4
∵点E是AD边上的一个动点
∴当E移动到线段AD中点时---BE最小;当E移动到线段AD的点A或D时----BE最大,是2
而当E移动到线段AD中点时AE=1且根据等边三角形性质可知:∠BEA=90º ∴根据勾股定理
得此时BE=√3
∴√3≤BE≤2 ∴ 3≤BE²≤4 ∴3√3/4≤S⊿BEF≤√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询