菱形ABCD和菱形BEFG中,点ABE在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°则PG/PC
2个回答
展开全部
证明:如图,延长GP交AD于点H,连接CH,CG.
∵P是线段DF的中点,
∴FP=DP,
∵AD∥FG,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵四边形ABCD是菱形,
∴CD=CB,∠HDC=∠ABC=60°,
∵∠ABC=∠BEF=60°,菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,
∴∠GBC=60°,
∴∠HDC=∠GBC,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
∴△HDC≌△GBC,
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
∴∠HCG=120°,
∵CH=CG,PH=PG,
∴PG⊥PC,∠GCP=∠HCP=60°,
∴ PG/PC=根号3
∵P是线段DF的中点,
∴FP=DP,
∵AD∥FG,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵四边形ABCD是菱形,
∴CD=CB,∠HDC=∠ABC=60°,
∵∠ABC=∠BEF=60°,菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,
∴∠GBC=60°,
∴∠HDC=∠GBC,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
∴△HDC≌△GBC,
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
∴∠HCG=120°,
∵CH=CG,PH=PG,
∴PG⊥PC,∠GCP=∠HCP=60°,
∴ PG/PC=根号3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询