已知函数f(x)=ln(1+x),g(x)=a+bx-1/2x^2+1/3x^3,函数y=f(x)与函数y=g(x)的图像在交点(0,0)处有公共切线
1个回答
展开全部
解:
(1)将(0,0)代入g(x)中得:a=0
则:g(x)=bx-(1/2)x^2+(1/3)x^3
又由题意可知:在点(0,0)处f(x)与g(x)的切线斜率相同
则有:f'(0)=g'(0)
则:g'(0)=b-0+0^2=f'(0)=1/(1+0)
即: b=1
则:g(x)=x-(1/2)x^2+(1/3)x^3
(2)
设F(x)=g(x)-f(x)=x-(1/2)x^2+(1/3)x^3-ln(1+x)
则:F'(x)=1-x+x^2- 1/(1+x)
令F'(x)=0
则有:F'(x)=x^3/(1+x)=0
得:x=0
故当x>0时,x+1>0,F'(x)>0
则F(x)在[0,+∞)上单增
则:x>=0时,F(x)>=F(0)=0
即:g(x)>=f(x)
(1)将(0,0)代入g(x)中得:a=0
则:g(x)=bx-(1/2)x^2+(1/3)x^3
又由题意可知:在点(0,0)处f(x)与g(x)的切线斜率相同
则有:f'(0)=g'(0)
则:g'(0)=b-0+0^2=f'(0)=1/(1+0)
即: b=1
则:g(x)=x-(1/2)x^2+(1/3)x^3
(2)
设F(x)=g(x)-f(x)=x-(1/2)x^2+(1/3)x^3-ln(1+x)
则:F'(x)=1-x+x^2- 1/(1+x)
令F'(x)=0
则有:F'(x)=x^3/(1+x)=0
得:x=0
故当x>0时,x+1>0,F'(x)>0
则F(x)在[0,+∞)上单增
则:x>=0时,F(x)>=F(0)=0
即:g(x)>=f(x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询