如图所示,已知四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC、AD边上,且AF=CE,EF和对角线BD相交于点O,求证

如图所示,已知四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC、AD边上,且AF=CE,EF和对角线BD相交于点O,求证:点O是BD的中点... 如图所示,已知四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC、AD边上,且AF=CE,EF和对角线BD相交于点O,求证:点O是BD的中点 展开
sh5215125
高粉答主

2012-04-22 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:96%
帮助的人:5930万
展开全部
证明:
∵AB=CD,镇饥盯AD=BC
∴四边形ABCD是平行四边形
∴肢弊AD//BC
∴∠FDO=∠EBO,∠DFO=∠御和BEO
∵AF=CE
∴AD-AF=BC-CE
即DF=BE
∴⊿DFO≌⊿BEO(ASA)
∴DO=BO
∴点O是BD的中点
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式