A1=2 An+1=1/2(An+1/An)求通项公式
1个回答
展开全部
猜想:通项是不能用初等函数表示出来的.
理由:通项的式子是非线性的.难以用一般的方法求出来。要求的所谓的“通项”,其实也只不过是以n作自变量,用那八九类基本初等函数复合而已。否则,若不能用那些基本初等函数复合得到,通项也就不能精确地表示出来了,只能求助于计算数学,求出某一项的近似值,也不能求出所有的近似值。
所以,现在首要的问题就是证明这个通项能不能写出解析表达式,即用初等函数复合出来。如果这个问题解决不了,很可能我们的一切努力都是白费了。
在微分方程中,刘维尔证明过几乎所有的非线性方程,解函数没有解析表达式。
在代数中,伽罗瓦理论告诉我们,次数高于四次的多项式,没有通用的求根公式。
而在这里,我估计结论差不多。更具体的如何去操作,不得而知了。或许前辈们早就给我们证明过了,只不过我们看得书少了,还没见到。
但可以证明这个通项是趋于正无穷的.从已知的式子,利用归纳法可证an<=n,从而1/an>1/n,从而a(n+1)>=an+1/n,而an递增,从而通项的增长速度不慢于调和级数的.
理由:通项的式子是非线性的.难以用一般的方法求出来。要求的所谓的“通项”,其实也只不过是以n作自变量,用那八九类基本初等函数复合而已。否则,若不能用那些基本初等函数复合得到,通项也就不能精确地表示出来了,只能求助于计算数学,求出某一项的近似值,也不能求出所有的近似值。
所以,现在首要的问题就是证明这个通项能不能写出解析表达式,即用初等函数复合出来。如果这个问题解决不了,很可能我们的一切努力都是白费了。
在微分方程中,刘维尔证明过几乎所有的非线性方程,解函数没有解析表达式。
在代数中,伽罗瓦理论告诉我们,次数高于四次的多项式,没有通用的求根公式。
而在这里,我估计结论差不多。更具体的如何去操作,不得而知了。或许前辈们早就给我们证明过了,只不过我们看得书少了,还没见到。
但可以证明这个通项是趋于正无穷的.从已知的式子,利用归纳法可证an<=n,从而1/an>1/n,从而a(n+1)>=an+1/n,而an递增,从而通项的增长速度不慢于调和级数的.
追问
你证明的错了,用数学归纳法可以证明这个数列是一个递减数列,1<=An<2
你证明的错了,用数学归纳法可以证明这个数列是一个递减数列,1<=An<2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询