已知数列{an}的各项均为正数,其前n项和为Sn。且满足2Sn=an^2+an(n∈N*).求数列an的通项公式

若bn=n(1/2)^an,求数列{bn}的前n项和Tn.非常急,求能人十分钟内解答... 若bn=n(1/2)^an,求数列{bn}的前n项和Tn.
非常急,求能人十分钟内解答
展开
xuzhouliuying
高粉答主

2012-04-25 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
n=1时,2S1=2a1=a1²+a1
a1²-a1=0 a1(a1-1)=0
a1=0(各项均为正数,舍去)或a1=1
n≥2时,
2Sn=an²+an
2Sn-1=a(n-1)²+a(n-1)
2Sn-2Sn-1=2an=an²+an-a(n-1)²-a(n-1)
an²-a(n-1)²-an-a(n-1)=0
[an+a(n-1)][an-a(n-1)]-[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-1]=0
数列各项均为正,an+a(n-1)恒>0,要等式成立,只有an-a(n-1)=1,为定值。
数列{an}是以1为首项,1为公差的等差数列。
an=1+n-1=n
数列{an}的通项公式为an=n

bn=n×(1/2)^an=n/2^n
Tn=b1+b2+b3+...+bn=1/2^1+2/2^2+3/2^3+...+n/2^n
Tn/2=1/2^2+2/2^3+...+(n-1)/2^n+n/2^(n+1)
Tn-Tn/2=Tn/2=1/2^1+1/2^2+1/2^3+...+1/2^n -n/2^(n+1)
=(1/2)(1-1/2^n)/(1-1/2) -n/2^(n+1)
=1-1/2^n -n/2^(n+1)
Tn=2 -1/2^(n-1) -n/2^n
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式