正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时
正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF=CF。(1)如图2,若点P在线段OA上...
正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF=CF。
(1)如图2,若点P在线段OA上(不与点A、O重合)PE⊥PB且交CD于点E.
①求证:DF=EF
②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论。
(2)若点P在线段OC上(不与点O、C重合)PE⊥PB且PE交直线CD于点E,完成图3并判断(1) 中的结论①②是否成立?若不成立,写出相应结论。
用正方形的对称性 展开
(1)如图2,若点P在线段OA上(不与点A、O重合)PE⊥PB且交CD于点E.
①求证:DF=EF
②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论。
(2)若点P在线段OC上(不与点O、C重合)PE⊥PB且PE交直线CD于点E,完成图3并判断(1) 中的结论①②是否成立?若不成立,写出相应结论。
用正方形的对称性 展开
展开全部
解:(1)延长FP交AB于点Q,,
①∵AC是正方形ABCD对角线,
∴∠QAP=∠APQ=45°,
∴AQ=PQ,
易得出BQ=PF,
∵PE⊥PB,
∴∠QPB+∠FPE=90°,
∵∠QBP+∠QPB=90°,
∴∠QBP=∠FPE,
∵∠BQP=∠PFE=90°,
∴△BQP≌△PFE,
∴QP=EF,
∵AQ=DF,
∴DF=EF;
②∵PF⊥CD,PG⊥AD,且,∠PCF=∠PAG=45°,
∴△PCF和△PAG均为等腰直角三角形,
∵四边形DFPG为矩形,
∴PA=2PG,PC=2CF,
∵PG=DF,DF=EF,
∴PA=2EF,
∴PC=2CF=2(CE+EF)=2CE+2EF=2CE+PA,
即PC、PA、CE满足关系为:PC=2CE+PA;
(2)结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA-PC=2CE.
①∵AC是正方形ABCD对角线,
∴∠QAP=∠APQ=45°,
∴AQ=PQ,
易得出BQ=PF,
∵PE⊥PB,
∴∠QPB+∠FPE=90°,
∵∠QBP+∠QPB=90°,
∴∠QBP=∠FPE,
∵∠BQP=∠PFE=90°,
∴△BQP≌△PFE,
∴QP=EF,
∵AQ=DF,
∴DF=EF;
②∵PF⊥CD,PG⊥AD,且,∠PCF=∠PAG=45°,
∴△PCF和△PAG均为等腰直角三角形,
∵四边形DFPG为矩形,
∴PA=2PG,PC=2CF,
∵PG=DF,DF=EF,
∴PA=2EF,
∴PC=2CF=2(CE+EF)=2CE+2EF=2CE+PA,
即PC、PA、CE满足关系为:PC=2CE+PA;
(2)结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA-PC=2CE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询