如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tanB=2. (1)求证:AD=AE;
(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:;(3)请你在图3中画图探究:当P为线段EC上任意一点(P不与点E重合)时,作EF垂直直线DP,垂足为...
(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:;
(3)请你在图3中画图探究:当P为线段EC上任意一点(P不与点E重合)时,作EF垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论. 展开
(3)请你在图3中画图探究:当P为线段EC上任意一点(P不与点E重合)时,作EF垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论. 展开
3个回答
展开全部
证明:2 ∵在□ABCD中,AD∥BC,AE⊥BC于E ∴AE⊥AD于A,∠FPE=∠ADP ∵AD=AE,∠EAD=90° ∴将△AEF绕点A逆时针旋转90°得到△ADG ∴△AEF≌△ADG,∠FAG=90° ∴AG=AF,∠ADG=∠AEF ∵EF⊥PD,AE⊥BC ∴∠AEF+∠PEF=90°,∠FPE+∠PEF=90° ∴∠AEF=∠FPE ∵∠ADG=∠AEF,∠FPE=∠ADP ∴∠ADG=∠ADP ∴点G在PD上 ∵AF=AG,∠FAG=90° ∴FG=根号2AF ∵FG=DF-DG=DF-EF ∴DF-EF=根号2AF
3 DF+EF=根号2AF
3 DF+EF=根号2AF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询