已知,三角形ABC中,∠A=90°,AB=AC,D为BC的中点1.如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为
展开全部
我来帮你回答第二问
方法类似
AB=AC AD=BD=DC ∴∠CAD=∠ABC=45
∴ ∠CBE=∠FAD=135 又因为AF=BE BD=AD
∴△ADF≌△BDE
∴DF=DE
∴∠BDE=∠ADF
∴∠FDE=∠BDE+∠BDF=∠ADF+∠BDF=∠ADB=90
方法类似
AB=AC AD=BD=DC ∴∠CAD=∠ABC=45
∴ ∠CBE=∠FAD=135 又因为AF=BE BD=AD
∴△ADF≌△BDE
∴DF=DE
∴∠BDE=∠ADF
∴∠FDE=∠BDE+∠BDF=∠ADF+∠BDF=∠ADB=90
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:连接AD
∵AB=AC,∠BAC=90°,D为BC的中点,
∴AD⊥BC,BD=AD.
∴∠B=∠DAC=45°
又BE=AF,
∴△BDE≌△ADF(SAS).
∴ED=FD,∠BDE=∠ADF.
∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.
∴△DEF为等腰直角三角形.
∵AB=AC,∠BAC=90°,D为BC的中点,
∴AD⊥BC,BD=AD.
∴∠B=∠DAC=45°
又BE=AF,
∴△BDE≌△ADF(SAS).
∴ED=FD,∠BDE=∠ADF.
∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.
∴△DEF为等腰直角三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:连结AD,在△ADF和△BDE中
AD=BD,∠DAF=∠DBE=45°,BE=AF
∴△ADF≌△BDE
∴DF=DE
∠ADF=∠BDE
∴∠EDF=∠ADF+∠ADE=∠BDE+∠ADE=90°
∴△DEF是等腰直角三角形
AD=BD,∠DAF=∠DBE=45°,BE=AF
∴△ADF≌△BDE
∴DF=DE
∠ADF=∠BDE
∴∠EDF=∠ADF+∠ADE=∠BDE+∠ADE=90°
∴△DEF是等腰直角三角形
追问
1.求证:△DEF为等腰直角三角形;2.若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他不变,△DEF是否仍为等腰直角三角形?证明你的结论。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询