已知在等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项。(1)求数列{an}的通项公式;(2)求若数列{bn}满... 30
已知在等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项。(1)求数列{an}的通项公式;(2)求若数列{bn}满足bn=2n-1+an(n属于N*),求{b...
已知在等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项。(1)求数列{an}的通项公式;(2)求若数列{bn}满足bn=2n-1+an(n属于N*),求{bn}的前n项和Sn
展开
5个回答
展开全部
已知在等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项。
(1)求数列{an}的通项公式;
2a2=a1+a3-1=a3
q=a3/a2=2
an=a1*q^(n-1)=2^(n-1)
(2)求若数列{bn}满足bn=2n-1+an(n属于N*),求{bn}的前n项和Sn
bn=2n-1+2^(n-1)
Sn=(1+n)n-n+(2^n-1)=n^2+2^n-1
(1)求数列{an}的通项公式;
2a2=a1+a3-1=a3
q=a3/a2=2
an=a1*q^(n-1)=2^(n-1)
(2)求若数列{bn}满足bn=2n-1+an(n属于N*),求{bn}的前n项和Sn
bn=2n-1+2^(n-1)
Sn=(1+n)n-n+(2^n-1)=n^2+2^n-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)、因为(a2)是(a1)和(a3)-1的等差中项,且{an}为等比数列,所以(a1)=1,(a2)=1* q,(a3)=1*q^2,2(a2)=(a1)+(a3)-1,解的q=2or0,舍0,所以an=2^(n-1)(n属于N*) (2)晚上回去发
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a2=a1q=q
a3=a1q²=q²
则:
2a2=a1+(a3-1)
2q=1+q²-1
q=2【q=0舍去】
an=2^(n-1)
bn=(2n-1)+an
=2^(n-1)+(2n-1)
则:
Sn=n²+(2^n-1) 【分组求和】
a3=a1q²=q²
则:
2a2=a1+(a3-1)
2q=1+q²-1
q=2【q=0舍去】
an=2^(n-1)
bn=(2n-1)+an
=2^(n-1)+(2n-1)
则:
Sn=n²+(2^n-1) 【分组求和】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询