n为正整数,一个三角形的三边长分别为2n²+2n+1,2n²+2n,2n+1.判断此三角形是不是直角三角形

并说明理由... 并说明理由 展开
aityan98
2012-04-27 · TA获得超过3.2万个赞
知道大有可为答主
回答量:6326
采纳率:80%
帮助的人:4409万
展开全部
注意到
2n²+2n+1>2n²+2n>2n+1
如果是直角三角形,则一定有
(2n²+2n+1)²-(2n²+2n)²
=4n²+4n+1
=(2n+1)²

故(2n²+2n+1)²=(2n²+2n)²+(2n+1)²
由勾股定理知
该三角形是直角三角形
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式