梯形ABCD中,AD∥BC,AC垂直BD,若AD=2,BC=8,BD=6,求 (1)对角线AC的 长。 (2) 梯形的面积 。
解:(1)设AC、BD相交于点O∵AC⊥BD∴∠AOD=∠COB=90°(对顶角相等)而AD∥BC,∴∠ADO=∠CBO(内错角相等)∴△AOD∽△COB∴OD:OB=O...
解:
(1)设AC、BD相交于点O
∵AC⊥BD
∴∠AOD=∠COB=90° (对顶角相等)
而AD∥BC,
∴∠ADO=∠CBO (内错角相等)
∴△AOD∽△COB
∴OD:OB =OA:OC = AD:CB =2:8=1:4
即,OD:BD =OA:AC = 1:5
而,BD = 6
∴OD = (1/5)*6 =6/5
∴OA = √【2² - (6/5)²】 = 8/5
∴AC = 5*(8/5) = 8
(2)S梯形ABCD = S△ABD+S△CBD
= (1/2)*AO*BD + (1/2)*CO*BD
= (1/2)*BD * ( AO + CO )
= (1/2)*AC*BD
= (1/2)*8*6
= 24 展开
(1)设AC、BD相交于点O
∵AC⊥BD
∴∠AOD=∠COB=90° (对顶角相等)
而AD∥BC,
∴∠ADO=∠CBO (内错角相等)
∴△AOD∽△COB
∴OD:OB =OA:OC = AD:CB =2:8=1:4
即,OD:BD =OA:AC = 1:5
而,BD = 6
∴OD = (1/5)*6 =6/5
∴OA = √【2² - (6/5)²】 = 8/5
∴AC = 5*(8/5) = 8
(2)S梯形ABCD = S△ABD+S△CBD
= (1/2)*AO*BD + (1/2)*CO*BD
= (1/2)*BD * ( AO + CO )
= (1/2)*AC*BD
= (1/2)*8*6
= 24 展开
展开全部
解:(1)设AC、BD相交于点O
∵AC⊥BD
∴∠AOD=∠COB=90° (对顶角相等)
而AD∥BC,
∴∠ADO=∠CBO (内错角相等)
∴△AOD∽△COB
∴OD:OB =OA:OC = AD:CB =2:8=1:4
即,OD:BD =OA:AC = 1:5
而,BD = 6
∴OD = (1/5)*6 =6/5
∴OA = √【2² - (6/5)²】 = 8/5
∴AC = 5*(8/5) = 8
(2)S梯形ABCD = S△ABD+S△CBD
= (1/2)*AO*BD + (1/2)*CO*BD
= (1/2)*BD * ( AO + CO )
= (1/2)*AC*BD
= (1/2)*8*6
= 24
∵AC⊥BD
∴∠AOD=∠COB=90° (对顶角相等)
而AD∥BC,
∴∠ADO=∠CBO (内错角相等)
∴△AOD∽△COB
∴OD:OB =OA:OC = AD:CB =2:8=1:4
即,OD:BD =OA:AC = 1:5
而,BD = 6
∴OD = (1/5)*6 =6/5
∴OA = √【2² - (6/5)²】 = 8/5
∴AC = 5*(8/5) = 8
(2)S梯形ABCD = S△ABD+S△CBD
= (1/2)*AO*BD + (1/2)*CO*BD
= (1/2)*BD * ( AO + CO )
= (1/2)*AC*BD
= (1/2)*8*6
= 24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:过D做DM∥AC交BC延长线与M,则四边形ACMD是平行四边形
所以MC=AD=2,DM=AC,所以MB=BC+CM=10
因为AC⊥BD,所以DM⊥BD
所以DM=√BM²-BD²=√100-36=8
所以AC=DM=8
2)梯形的面积=三角形BDM的面积=1/2*BD*DM=1/2*6*8=24
所以MC=AD=2,DM=AC,所以MB=BC+CM=10
因为AC⊥BD,所以DM⊥BD
所以DM=√BM²-BD²=√100-36=8
所以AC=DM=8
2)梯形的面积=三角形BDM的面积=1/2*BD*DM=1/2*6*8=24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询