常见解决问题的策略有( )、( )、( )
画图的策略、推理的策略、尝试调整的策略,模拟操作的策略。
一、画图的策略。
由于小学生认知水平的局限,他们对符号、运算性质的推理可能会发生困难,在解决问题时,引导他们自己在纸上涂一涂、画一画,可以拓展解题思路,找到解题关键,领悟解题方法。因此,画图应该是学生们应该掌握的一种基本的解题策略,尤其用算术法解题的小学生来说,非常重要。
主要是因为这种方法直观、形象,能够帮助学生将抽象的数学问题具体化,复杂的问题简单化。可以弥补小学生思维能力的不足,逐步提升其思维水平。
常用的画图方法有:直观图、线段图、示意图、思维导图、集合图等。
二、推理的策略。
数学教学的价值追求就是学生思维的发展,数学教育的最高境界就是培养人的思维方式。而推理是数学的基本思维方法,也是学生数学学习中经常使用的思维方式。
推理包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比得到某些结果。演绎推理是从定义、公式、法则等出发,进行证明与计算。
在小学数学问题解决的过程中,更多采用合情推理。比如常用的假设法、设数法等。以往数学教学中常说的“分析法”与“综合法”,都是简单的推理。
三、尝试调整的策略。
尝试的策略,简单地说就是你不知道从哪儿开始的时候,可以先猜一猜。猜测的结果如果合理但不合乎要求,再把结果放到问题中去考虑,进一步调整、寻找答案。
小学数学学习中常用的表格法、枚举法、筛选法等,其实就是尝试调整的策略。比如我们在解决鸡兔同笼问题时,用列举鸡和兔的只数算对应腿数,就是这种策略。
四、模拟操作的策略。
模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。
比如,在解决火车过桥问题时,让学生将文具盒当做桥,将自己用的笔当做火车,自己模拟火车过桥。通过类似问题的模拟,把这种不清晰的数量关系很直观地表现出来,这种问题就容易理解解决了。
其他策略:
1、简化策略
所谓简化就是把复杂的问题简单化,我们在解决问题的过程可能会发现有些结合实际的问题,不管在语言的表述还是信息的传递上可能要说一大堆有关情境的事,我们怎么样把这个生活中的实际问题,把它抽象成数学问题,简化策略就是指在解决问题过程中,先抛开问题的细节,直接抓住问题的关键信息,将抽象的问题简化成简单的形式,解决简化了的问题,再解决复杂的问题,这就是一个简化的过程。
正如著名数学家华罗庚所说的“善于‘退’,足够地‘退’,‘退’到最原始而不失去重要性的地方,是学好数学的一个诀窍”。运用简化策略除了可以将复杂的问题明了、简洁,还可以运用简化策略将陌生的问题转化为熟悉的问题,使我们便于抓住问题的关键部分进行思考从而解决问题。
2、倒推策略
倒推策略也叫还原策略,就是在解决问题时,有些问题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题很容易就解决了。这种从问题出发推理寻求解题途径的方法就是逆推法。
在解决实际问题的过程中让学生了解适合用这个策略来解决问题的特点,学会用“逆推”的策略解决问题的思考方法,增强解决问题的策略的意识,获得解决问题的成功体验,提高学好数学的信心。例如:男生比女生的2倍多10人,男生有50人,求女生有多少人?就可以使用倒推的策略。
3、类比推理策略
当学生面临新问题时,教师及时启发学生用他们所熟悉的知识经验对新问题进行分析、比较,发现其内在联系,从而获得新问题的解决方法。引导学生类比,进行推测和引申,串联了知识点,拓宽了知识面,强化了解决问题的能力。
就如同搭桥引渡,使学生温故知新,能帮助学生有效的认识事物的基本规律,更好地理解问题、提高分析问题和解决问题的能力。
4、转化策略
转化是小学生在学习和解决问题时常用的一种策略,所谓转化就是一个人运用已有的知识的、已经习得的经验,将一些新问题转化成旧有问题进而解答的过程,也就是人的思维方式转变的过程。学生运用转化策略,不仅可以熟练运用旧有知识,又可将新问题的解决方式纳入到旧有的策略中,以形成更完整的知识体系。
曹冲称象的方法就是一个很典型的转化策略。例如:一支钢笔和三支圆珠笔的价钱相等,小明买了5支钢笔和4支铅笔,一共用了38元,求每支钢笔和铅笔各多少元?就可以运用转化的策略来解决,可以把钢笔转化为铅笔,就很容易解决了。
解决问题的策略:转化、倒推、整合