![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如图,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)和B,与y轴交于点C(0,3).
(2)设抛物线的顶点为D,连接CD、DB、CB、AC.①求证:△AOC∽△DCB;(2)①证明:可求得顶点D(1,4),OA=1,OC=OB=3,∠OCB=45°,由勾股...
(2)设抛物线的顶点为D,连接CD、DB、CB、AC. ①求证:△AOC∽△DCB;
(2)①证明:可求得顶点D(1,4),OA=1,OC=OB=3,∠OCB=45°,
由勾股定理求得:CD=根号2,BC=3根号2.
∴CD:CB=根号2:3根号2=1:3=OA:OC,
易知:∠DCy=45°,故∠DCB=90°=∠AOC,
∴△AOC∽△DCB.
怎么证得△DCB为直角三角形的。 展开
(2)①证明:可求得顶点D(1,4),OA=1,OC=OB=3,∠OCB=45°,
由勾股定理求得:CD=根号2,BC=3根号2.
∴CD:CB=根号2:3根号2=1:3=OA:OC,
易知:∠DCy=45°,故∠DCB=90°=∠AOC,
∴△AOC∽△DCB.
怎么证得△DCB为直角三角形的。 展开
展开全部
你看啊,过D做y轴的垂线交于E,那么CE=1,DE=1,三角形CDE为等腰直角三角形,所以∠DCy=45°,而∠OCB=45°,所以∠DCB=180°-∠OCB-∠DCy=90°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询