已知函数f(x)=2sinx(sinx+cosx) 求使f(x)大于等于2成立的x的取值范围
3个回答
展开全部
f(x)=2sinx(sinx+cosx)
=2sin²x+2sinxcosx
=1-cos2x+sin2x
=1+√2sin(2x-π/4)
因为f(x)≥2成立,即1+√2sin(2x-π/4)≥2
√2sin(2x-π/4)≥1
sin(2x-π/4)≥√2/2
所以π/4+2kπ≤2x-π/4≤3π/4+2kπ
π/2+2kπ≤2x≤π+2kπ
π/4+kπ≤x≤π/2+kπ k∈z
=2sin²x+2sinxcosx
=1-cos2x+sin2x
=1+√2sin(2x-π/4)
因为f(x)≥2成立,即1+√2sin(2x-π/4)≥2
√2sin(2x-π/4)≥1
sin(2x-π/4)≥√2/2
所以π/4+2kπ≤2x-π/4≤3π/4+2kπ
π/2+2kπ≤2x≤π+2kπ
π/4+kπ≤x≤π/2+kπ k∈z
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=2sinx(sinx+cosx)
=2sin²x+2sinxcosx
=1-cos2x+sin2x
f(x)≥2
则:
sin2x-cos2x≥1
√2(sin2xcosπ/4-cos2xsinπ/4)≥1
sin(2x-π/4)≥√2/2
2kπ+π/4≤2x-π/4≤2kπ+3π/4
2kπ+π/2≤2x≤2kπ+π
kπ+π/4≤x≤kπ+π/2;k∈Z
=2sin²x+2sinxcosx
=1-cos2x+sin2x
f(x)≥2
则:
sin2x-cos2x≥1
√2(sin2xcosπ/4-cos2xsinπ/4)≥1
sin(2x-π/4)≥√2/2
2kπ+π/4≤2x-π/4≤2kπ+3π/4
2kπ+π/2≤2x≤2kπ+π
kπ+π/4≤x≤kπ+π/2;k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询