设Sn是正项数列{an}的前n项和,且Sn=1/4an^2+1/2an-3/4,数列{Kn}满足Kn+1=3Kn -1,当n≧2时证明:
设Sn是正项数列{an}的前n项和,且Sn=1/4an2+1/2an-3/4,数列{Kn}满足Kn+1=3Kn-1,当n≧2时证明:a1/(2K2-2)+a2/(2K3-...
设Sn是正项数列{an}的前n项和,且Sn=1/4an2+1/2an-3/4,数列{Kn}满足Kn+1=3Kn -1,当n≧2时证明:
a1/(2K2-2)+a2/(2K3-2)+L+an/(2kn-2)<8/3
图比较清楚,各位仁兄看图应该会好一点 展开
a1/(2K2-2)+a2/(2K3-2)+L+an/(2kn-2)<8/3
图比较清楚,各位仁兄看图应该会好一点 展开
2个回答
展开全部
an=2n+1
由k(n+1)=3(kn)-1可知
k2=3k1-1
k3=3(3k1-1)-1=3^2k1-(3+1)
k4=3(3^2k1-(3+1))-1=3^3k1-(3^2+3+1)
所以
kn=3^(n-1)k1-(1+3+...+3^(n-2))(n》2)
=3^(n-1)k1-(1(1-3^(n-1))/(1-3))
=3^(n-1)k1-1/2(3^(n-1)-1) k1=1代入化简
=1/2[3^(n-1)+1]
显然当n=1时,等式也成立,所以
kn=1/2[3^(n-1)+1]
an/(2k(n+1)-2)=(2n+1)/[3^n-1]
当n》2时,an/(2k(n+1)-2)=(2n+1)/[3^n-1]<(2n+2)/3^n
a1/(2k2-2)+a2/(2k3-2)+a3/(2k4-2)+.....+a(n-1)/2kn-2
<4/3+6/3^2+8/3^3+...+2n/3^(n-1) [这里自己求和下,同乘1/3,再相减就可]
=3/2{2/3+2[1/2(1-1/3^(n-1))]-2n/3^n}
=3/2[2/3+1-(1/3^(n-1)+2n/3^n)]
=3/2[5/3-(1/3^(n-1)+2n/3^n)]
=5/2-3/2(1/3^(n-1)+2n/3^n)]
<5/2<8/3
由k(n+1)=3(kn)-1可知
k2=3k1-1
k3=3(3k1-1)-1=3^2k1-(3+1)
k4=3(3^2k1-(3+1))-1=3^3k1-(3^2+3+1)
所以
kn=3^(n-1)k1-(1+3+...+3^(n-2))(n》2)
=3^(n-1)k1-(1(1-3^(n-1))/(1-3))
=3^(n-1)k1-1/2(3^(n-1)-1) k1=1代入化简
=1/2[3^(n-1)+1]
显然当n=1时,等式也成立,所以
kn=1/2[3^(n-1)+1]
an/(2k(n+1)-2)=(2n+1)/[3^n-1]
当n》2时,an/(2k(n+1)-2)=(2n+1)/[3^n-1]<(2n+2)/3^n
a1/(2k2-2)+a2/(2k3-2)+a3/(2k4-2)+.....+a(n-1)/2kn-2
<4/3+6/3^2+8/3^3+...+2n/3^(n-1) [这里自己求和下,同乘1/3,再相减就可]
=3/2{2/3+2[1/2(1-1/3^(n-1))]-2n/3^n}
=3/2[2/3+1-(1/3^(n-1)+2n/3^n)]
=3/2[5/3-(1/3^(n-1)+2n/3^n)]
=5/2-3/2(1/3^(n-1)+2n/3^n)]
<5/2<8/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询