设a,b,c为三角形ABC的三条边,求证;a^2+b^2+c^2<2(ab+bc+ca)
2个回答
展开全部
如果那个符号式a的平方+b的平方+c的平方,,这样做,后面的式子是2ab+2bc+2ac把2ab移到左式,变成(a—b)的平方+c的平方小于2bc+2ac。因为是三角形的三边所以a-b小于c(两边之差小于第三边)。所以(a-b)的平方小于c的平方。即2c的平方小于2bc+2ac 成立。即2c的平方小于2c(b+a) 两边同除以2c 得c小于a+b 到这就可以了,因为两边之和大于第三边。。。顺便说一句,我都大2了,这东西几年前就不学了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询